{"title":"基于伊朗、美国、英国、印度和巴西的模拟数据的COVID-19有效复制数(Rt)估算方法比较","authors":"Ali Karamoozian, Abbas Bahrampour","doi":"10.34172/jrhs.2022.94","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Accurate determination of the effective reproduction number (Rt) is a very important strategy in the epidemiology of contagious diseases, including coronavirus disease 2019 (COVID-19). This study compares different methods of estimating the Rt of susceptible population to identify the most accurate method for estimating Rt.</p><p><strong>Study design: </strong>A secondary study.</p><p><strong>Methods: </strong>The value of Rt was estimated using attack rate (AR), exponential growth (EG), maximum likelihood (ML), time-dependent (TD), and sequential Bayesian (SB) methods, for Iran, the United States, the United Kingdom, India, and Brazil from June to October 2021. In order to accurately compare these methods, a simulation study was designed using forty scenarios.</p><p><strong>Results: </strong>The lowest mean square error (MSE) was observed for TD and ML methods, with 15 and 12 cases, respectively. Therefore, considering the estimated values of Rt based on the TD method, it was found that Rt values in the United Kingdom (1.33; 95% CI: 1.14-1.52) and the United States (1.25; 95% CI: 1.12-1.38) substantially have been more than those in other countries, such as Iran (1.07; 95% CI: 0.95-1.19), India (0.99; 95% CI: 0.89-1.08), and Brazil (0.98; 95% CI: 0.84-1.14) from June to October 2021.</p><p><strong>Conclusion: </strong>The important result of this study is that TD and ML methods lead to a more accurate estimation of Rt of population than other methods. Therefore, in order to monitor and determine the epidemic situation and have a more accurate prediction of the incidence rate, as well as control COVID-19 and similar diseases, the use of these two methods is suggested to more accurately estimate Rt.</p>","PeriodicalId":17164,"journal":{"name":"Journal of research in health sciences","volume":"22 3","pages":"e00559"},"PeriodicalIF":1.4000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422149/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparison of the Effective Reproduction Number (Rt) Estimation Methods of COVID-19 Using Simulation Data Based on Available Data from Iran, USA, UK, India, and Brazil.\",\"authors\":\"Ali Karamoozian, Abbas Bahrampour\",\"doi\":\"10.34172/jrhs.2022.94\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Accurate determination of the effective reproduction number (Rt) is a very important strategy in the epidemiology of contagious diseases, including coronavirus disease 2019 (COVID-19). This study compares different methods of estimating the Rt of susceptible population to identify the most accurate method for estimating Rt.</p><p><strong>Study design: </strong>A secondary study.</p><p><strong>Methods: </strong>The value of Rt was estimated using attack rate (AR), exponential growth (EG), maximum likelihood (ML), time-dependent (TD), and sequential Bayesian (SB) methods, for Iran, the United States, the United Kingdom, India, and Brazil from June to October 2021. In order to accurately compare these methods, a simulation study was designed using forty scenarios.</p><p><strong>Results: </strong>The lowest mean square error (MSE) was observed for TD and ML methods, with 15 and 12 cases, respectively. Therefore, considering the estimated values of Rt based on the TD method, it was found that Rt values in the United Kingdom (1.33; 95% CI: 1.14-1.52) and the United States (1.25; 95% CI: 1.12-1.38) substantially have been more than those in other countries, such as Iran (1.07; 95% CI: 0.95-1.19), India (0.99; 95% CI: 0.89-1.08), and Brazil (0.98; 95% CI: 0.84-1.14) from June to October 2021.</p><p><strong>Conclusion: </strong>The important result of this study is that TD and ML methods lead to a more accurate estimation of Rt of population than other methods. Therefore, in order to monitor and determine the epidemic situation and have a more accurate prediction of the incidence rate, as well as control COVID-19 and similar diseases, the use of these two methods is suggested to more accurately estimate Rt.</p>\",\"PeriodicalId\":17164,\"journal\":{\"name\":\"Journal of research in health sciences\",\"volume\":\"22 3\",\"pages\":\"e00559\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422149/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of research in health sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34172/jrhs.2022.94\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of research in health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34172/jrhs.2022.94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
Comparison of the Effective Reproduction Number (Rt) Estimation Methods of COVID-19 Using Simulation Data Based on Available Data from Iran, USA, UK, India, and Brazil.
Background: Accurate determination of the effective reproduction number (Rt) is a very important strategy in the epidemiology of contagious diseases, including coronavirus disease 2019 (COVID-19). This study compares different methods of estimating the Rt of susceptible population to identify the most accurate method for estimating Rt.
Study design: A secondary study.
Methods: The value of Rt was estimated using attack rate (AR), exponential growth (EG), maximum likelihood (ML), time-dependent (TD), and sequential Bayesian (SB) methods, for Iran, the United States, the United Kingdom, India, and Brazil from June to October 2021. In order to accurately compare these methods, a simulation study was designed using forty scenarios.
Results: The lowest mean square error (MSE) was observed for TD and ML methods, with 15 and 12 cases, respectively. Therefore, considering the estimated values of Rt based on the TD method, it was found that Rt values in the United Kingdom (1.33; 95% CI: 1.14-1.52) and the United States (1.25; 95% CI: 1.12-1.38) substantially have been more than those in other countries, such as Iran (1.07; 95% CI: 0.95-1.19), India (0.99; 95% CI: 0.89-1.08), and Brazil (0.98; 95% CI: 0.84-1.14) from June to October 2021.
Conclusion: The important result of this study is that TD and ML methods lead to a more accurate estimation of Rt of population than other methods. Therefore, in order to monitor and determine the epidemic situation and have a more accurate prediction of the incidence rate, as well as control COVID-19 and similar diseases, the use of these two methods is suggested to more accurately estimate Rt.
期刊介绍:
The Journal of Research in Health Sciences (JRHS) is the official journal of the School of Public Health; Hamadan University of Medical Sciences, which is published quarterly. Since 2017, JRHS is published electronically. JRHS is a peer-reviewed, scientific publication which is produced quarterly and is a multidisciplinary journal in the field of public health, publishing contributions from Epidemiology, Biostatistics, Public Health, Occupational Health, Environmental Health, Health Education, and Preventive and Social Medicine. We do not publish clinical trials, nursing studies, animal studies, qualitative studies, nutritional studies, health insurance, and hospital management. In addition, we do not publish the results of laboratory and chemical studies in the field of ergonomics, occupational health, and environmental health