Abid Haleem , Mohd Javaid , Ravi Pratap Singh , Rajiv Suman
{"title":"使用智能材料的4D打印在制造领域的重要作用","authors":"Abid Haleem , Mohd Javaid , Ravi Pratap Singh , Rajiv Suman","doi":"10.1016/j.aiepr.2021.05.001","DOIUrl":null,"url":null,"abstract":"<div><p>For many years, 3D Printing technologies have created significant advancements in the fields of engineering and healthcare. 4D printing is also introduced, which is the advanced version of 3D printing. The process of 4D printing is when a printed 3D object becomes another structure due to the influence of outside energy inputs such as temperature, light, or other environmental stimuli. This technology uses the input of smart materials, which have the excellent capability of shape-changing. The self-assembly and programmable material technology aim to reimagine building, production, assembly of products, and performance. 4D printing is applied in various sectors such as engineering, medicine, and others. 4D printed proteins could be a great application. With this new dimension, 3D printed objects can change their shape by themselves over the influence of external stimuli, such as light, heat, electricity, magnetic field, etc. This paper discussed a brief about 4D printing technology. Various characteristics of 4D Printing for enhancing the manufacturing domain, its development, and applications are discussed diagrammatically. Conceptualised the Work Process Flow for 4D Additive Manufacturing and finally identified ten major roles of 4D printing in the manufacturing field. Although reversible 4D Printing itself is a fantastic development, it is innovative, and it employs durable and accurate reversal material during the shapeshift. It helps us create complicated structures that cannot be accomplished easily by traditional manufacturing technologies. It seems to be a game-changer in different industries by depending on natural factors instead of energy and changes the way to produce, develop, bundle, and ship goods entirely.</p></div>","PeriodicalId":7186,"journal":{"name":"Advanced Industrial and Engineering Polymer Research","volume":"4 4","pages":"Pages 301-311"},"PeriodicalIF":9.9000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.aiepr.2021.05.001","citationCount":"51","resultStr":"{\"title\":\"Significant roles of 4D printing using smart materials in the field of manufacturing\",\"authors\":\"Abid Haleem , Mohd Javaid , Ravi Pratap Singh , Rajiv Suman\",\"doi\":\"10.1016/j.aiepr.2021.05.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For many years, 3D Printing technologies have created significant advancements in the fields of engineering and healthcare. 4D printing is also introduced, which is the advanced version of 3D printing. The process of 4D printing is when a printed 3D object becomes another structure due to the influence of outside energy inputs such as temperature, light, or other environmental stimuli. This technology uses the input of smart materials, which have the excellent capability of shape-changing. The self-assembly and programmable material technology aim to reimagine building, production, assembly of products, and performance. 4D printing is applied in various sectors such as engineering, medicine, and others. 4D printed proteins could be a great application. With this new dimension, 3D printed objects can change their shape by themselves over the influence of external stimuli, such as light, heat, electricity, magnetic field, etc. This paper discussed a brief about 4D printing technology. Various characteristics of 4D Printing for enhancing the manufacturing domain, its development, and applications are discussed diagrammatically. Conceptualised the Work Process Flow for 4D Additive Manufacturing and finally identified ten major roles of 4D printing in the manufacturing field. Although reversible 4D Printing itself is a fantastic development, it is innovative, and it employs durable and accurate reversal material during the shapeshift. It helps us create complicated structures that cannot be accomplished easily by traditional manufacturing technologies. It seems to be a game-changer in different industries by depending on natural factors instead of energy and changes the way to produce, develop, bundle, and ship goods entirely.</p></div>\",\"PeriodicalId\":7186,\"journal\":{\"name\":\"Advanced Industrial and Engineering Polymer Research\",\"volume\":\"4 4\",\"pages\":\"Pages 301-311\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.aiepr.2021.05.001\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Industrial and Engineering Polymer Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542504821000282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Industrial and Engineering Polymer Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542504821000282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Significant roles of 4D printing using smart materials in the field of manufacturing
For many years, 3D Printing technologies have created significant advancements in the fields of engineering and healthcare. 4D printing is also introduced, which is the advanced version of 3D printing. The process of 4D printing is when a printed 3D object becomes another structure due to the influence of outside energy inputs such as temperature, light, or other environmental stimuli. This technology uses the input of smart materials, which have the excellent capability of shape-changing. The self-assembly and programmable material technology aim to reimagine building, production, assembly of products, and performance. 4D printing is applied in various sectors such as engineering, medicine, and others. 4D printed proteins could be a great application. With this new dimension, 3D printed objects can change their shape by themselves over the influence of external stimuli, such as light, heat, electricity, magnetic field, etc. This paper discussed a brief about 4D printing technology. Various characteristics of 4D Printing for enhancing the manufacturing domain, its development, and applications are discussed diagrammatically. Conceptualised the Work Process Flow for 4D Additive Manufacturing and finally identified ten major roles of 4D printing in the manufacturing field. Although reversible 4D Printing itself is a fantastic development, it is innovative, and it employs durable and accurate reversal material during the shapeshift. It helps us create complicated structures that cannot be accomplished easily by traditional manufacturing technologies. It seems to be a game-changer in different industries by depending on natural factors instead of energy and changes the way to produce, develop, bundle, and ship goods entirely.