{"title":"体外镉暴露诱导雌性大鼠主动脉结构损伤和内皮功能障碍。","authors":"Lorraine Christiny Costa Sepulchro Mulher, Rakel Passos Simões, Karoline Alves Rossi, Ingridy Reinholz Grafites Schereider, Camilla Lóren da Silva Nascimento, Renata Andrade Ávila, Alessandra Simão Padilha","doi":"10.1007/s10534-023-00526-5","DOIUrl":null,"url":null,"abstract":"<div><p>Cadmium is a heavy metal that is widespread in the environment and has been described as a metalloestrogen and a cardiovascular risk factor. Experimental studies conducted in male animals have shown that cadmium exposure induces vascular dysfunction, which could lead to vasculopathies caused by this metal. However, it is necessary to investigate the vascular effects of cadmium in female rats to understand its potential sex-dependent impact on the cardiovascular system. While its effects on male rats have been studied, cadmium may act differently in females due to its potential as a metalloestrogen. In vitro studies conducted in a controlled environment allow for a direct assessment of cadmium's impact on vascular function, and the use of female rats ensures that sex-dependent effects are evaluated. Therefore, the aim of this study was to investigate the in vitro effects of Cadmium Chloride (CdCl<sub>2</sub>, 5 µM) exposure on vascular reactivity in the isolated aorta of female Wistar rats. Exposure to CdCl<sub>2</sub> damaged the architecture of the vascular endothelium. CdCl<sub>2</sub> incubation increased the production and release of O<sub>2</sub><sup>•−</sup>, reduced the participation of potassium (K<sup>+</sup>) channels, and increased the participation of the angiotensin II pathway in response to phenylephrine. Moreover, estrogen receptors alpha (Erα) modulated vascular reactivity to phenylephrine in the presence of cadmium, supporting the hypothesis that cadmium could act as a metalloestrogen. Our results demonstrated that in vitro cadmium exposure induces damage to endothelial architecture and an increase in oxidative stress in the isolated aorta of female rats, which could precipitate vasculopathies.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div><div><p>Graphical Abstract. Own source from Canva and Servier Medical Art servers</p></div></div></figure></div></div>","PeriodicalId":491,"journal":{"name":"Biometals","volume":"36 6","pages":"1405 - 1420"},"PeriodicalIF":4.1000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In vitro cadmium exposure induces structural damage and endothelial dysfunction in female rat aorta\",\"authors\":\"Lorraine Christiny Costa Sepulchro Mulher, Rakel Passos Simões, Karoline Alves Rossi, Ingridy Reinholz Grafites Schereider, Camilla Lóren da Silva Nascimento, Renata Andrade Ávila, Alessandra Simão Padilha\",\"doi\":\"10.1007/s10534-023-00526-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cadmium is a heavy metal that is widespread in the environment and has been described as a metalloestrogen and a cardiovascular risk factor. Experimental studies conducted in male animals have shown that cadmium exposure induces vascular dysfunction, which could lead to vasculopathies caused by this metal. However, it is necessary to investigate the vascular effects of cadmium in female rats to understand its potential sex-dependent impact on the cardiovascular system. While its effects on male rats have been studied, cadmium may act differently in females due to its potential as a metalloestrogen. In vitro studies conducted in a controlled environment allow for a direct assessment of cadmium's impact on vascular function, and the use of female rats ensures that sex-dependent effects are evaluated. Therefore, the aim of this study was to investigate the in vitro effects of Cadmium Chloride (CdCl<sub>2</sub>, 5 µM) exposure on vascular reactivity in the isolated aorta of female Wistar rats. Exposure to CdCl<sub>2</sub> damaged the architecture of the vascular endothelium. CdCl<sub>2</sub> incubation increased the production and release of O<sub>2</sub><sup>•−</sup>, reduced the participation of potassium (K<sup>+</sup>) channels, and increased the participation of the angiotensin II pathway in response to phenylephrine. Moreover, estrogen receptors alpha (Erα) modulated vascular reactivity to phenylephrine in the presence of cadmium, supporting the hypothesis that cadmium could act as a metalloestrogen. Our results demonstrated that in vitro cadmium exposure induces damage to endothelial architecture and an increase in oxidative stress in the isolated aorta of female rats, which could precipitate vasculopathies.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div><div><p>Graphical Abstract. Own source from Canva and Servier Medical Art servers</p></div></div></figure></div></div>\",\"PeriodicalId\":491,\"journal\":{\"name\":\"Biometals\",\"volume\":\"36 6\",\"pages\":\"1405 - 1420\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometals\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10534-023-00526-5\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometals","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10534-023-00526-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
In vitro cadmium exposure induces structural damage and endothelial dysfunction in female rat aorta
Cadmium is a heavy metal that is widespread in the environment and has been described as a metalloestrogen and a cardiovascular risk factor. Experimental studies conducted in male animals have shown that cadmium exposure induces vascular dysfunction, which could lead to vasculopathies caused by this metal. However, it is necessary to investigate the vascular effects of cadmium in female rats to understand its potential sex-dependent impact on the cardiovascular system. While its effects on male rats have been studied, cadmium may act differently in females due to its potential as a metalloestrogen. In vitro studies conducted in a controlled environment allow for a direct assessment of cadmium's impact on vascular function, and the use of female rats ensures that sex-dependent effects are evaluated. Therefore, the aim of this study was to investigate the in vitro effects of Cadmium Chloride (CdCl2, 5 µM) exposure on vascular reactivity in the isolated aorta of female Wistar rats. Exposure to CdCl2 damaged the architecture of the vascular endothelium. CdCl2 incubation increased the production and release of O2•−, reduced the participation of potassium (K+) channels, and increased the participation of the angiotensin II pathway in response to phenylephrine. Moreover, estrogen receptors alpha (Erα) modulated vascular reactivity to phenylephrine in the presence of cadmium, supporting the hypothesis that cadmium could act as a metalloestrogen. Our results demonstrated that in vitro cadmium exposure induces damage to endothelial architecture and an increase in oxidative stress in the isolated aorta of female rats, which could precipitate vasculopathies.
期刊介绍:
BioMetals is the only established journal to feature the important role of metal ions in chemistry, biology, biochemistry, environmental science, and medicine. BioMetals is an international, multidisciplinary journal singularly devoted to the rapid publication of the fundamental advances of both basic and applied research in this field. BioMetals offers a forum for innovative research and clinical results on the structure and function of:
- metal ions
- metal chelates,
- siderophores,
- metal-containing proteins
- biominerals in all biosystems.
- BioMetals rapidly publishes original articles and reviews.
BioMetals is a journal for metals researchers who practice in medicine, biochemistry, pharmacology, toxicology, microbiology, cell biology, chemistry, and plant physiology who are based academic, industrial and government laboratories.