RhoA/ROCK信号传导与病理性视网膜新生血管形成有关。

IF 1.8 4区 医学 Q3 PERIPHERAL VASCULAR DISEASE Journal of Vascular Research Pub Date : 2023-01-01 Epub Date: 2023-09-01 DOI:10.1159/000533321
Fen Tang, Kongqian Huang, Biyan Peng, Wen Deng, Ning Su, Fan Xu, Mingyuan Zhang, Haibin Zhong
{"title":"RhoA/ROCK信号传导与病理性视网膜新生血管形成有关。","authors":"Fen Tang, Kongqian Huang, Biyan Peng, Wen Deng, Ning Su, Fan Xu, Mingyuan Zhang, Haibin Zhong","doi":"10.1159/000533321","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The aim of the study was to evaluate the effect of the RhoA/ROCK inhibitor Fasudil on retinal neovascularization (NV) in vivo and angiogenesis in vitro.</p><p><strong>Methods: </strong>C57BL/6 was used to establish an OIR model. First, RhoA/ROCK expression was first examined and compared between OIR and healthy controls. Then, we evaluated the effect of Fasudil on pathological retinal NV. Whole-mount retinal staining was performed. The percentage of NV area, the number of neovascular tufts (NVT), and branch points (BP) were quantified. Finally, human umbilical vein endothelial cells (HUVECs) were used to investigate the effect of Fasudil on angiogenesis.</p><p><strong>Results: </strong>Real-time PCR and Western blotting showed that ROCK expression in retinal tissue was statistically upregulated in OIR. Furthermore, we found that Fasudil attenuated the percentage of NV area, the number of NVT, and BP significantly. In addition, Fasudil could suppress the proliferation and migration of HUVECs induced by VEGF.</p><p><strong>Conclusions: </strong>RhoA/ROCK might be involved in the pathogenesis of OIR. And its inhibitor Fasudil could suppress retinal NV in vivo and angiogenesis in vitro. Fasudil may be a potential treatment strategy for retinal vascular diseases.</p>","PeriodicalId":17530,"journal":{"name":"Journal of Vascular Research","volume":" ","pages":"183-192"},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614457/pdf/","citationCount":"0","resultStr":"{\"title\":\"RhoA/ROCK Signaling Is Involved in Pathological Retinal Neovascularization.\",\"authors\":\"Fen Tang, Kongqian Huang, Biyan Peng, Wen Deng, Ning Su, Fan Xu, Mingyuan Zhang, Haibin Zhong\",\"doi\":\"10.1159/000533321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>The aim of the study was to evaluate the effect of the RhoA/ROCK inhibitor Fasudil on retinal neovascularization (NV) in vivo and angiogenesis in vitro.</p><p><strong>Methods: </strong>C57BL/6 was used to establish an OIR model. First, RhoA/ROCK expression was first examined and compared between OIR and healthy controls. Then, we evaluated the effect of Fasudil on pathological retinal NV. Whole-mount retinal staining was performed. The percentage of NV area, the number of neovascular tufts (NVT), and branch points (BP) were quantified. Finally, human umbilical vein endothelial cells (HUVECs) were used to investigate the effect of Fasudil on angiogenesis.</p><p><strong>Results: </strong>Real-time PCR and Western blotting showed that ROCK expression in retinal tissue was statistically upregulated in OIR. Furthermore, we found that Fasudil attenuated the percentage of NV area, the number of NVT, and BP significantly. In addition, Fasudil could suppress the proliferation and migration of HUVECs induced by VEGF.</p><p><strong>Conclusions: </strong>RhoA/ROCK might be involved in the pathogenesis of OIR. And its inhibitor Fasudil could suppress retinal NV in vivo and angiogenesis in vitro. Fasudil may be a potential treatment strategy for retinal vascular diseases.</p>\",\"PeriodicalId\":17530,\"journal\":{\"name\":\"Journal of Vascular Research\",\"volume\":\" \",\"pages\":\"183-192\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614457/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vascular Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000533321\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PERIPHERAL VASCULAR DISEASE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vascular Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000533321","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/1 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
引用次数: 0

摘要

目的:评价RhoA/ROCK抑制剂Fasudil对视网膜新生血管(NV)的体内和体外作用。方法:采用C57BL/6建立OIR动物模型。首先,首先检测RhoA/ROCK的表达,并在OIR和健康对照之间进行比较。然后,我们评估了Fasudil对病理性视网膜NV的影响。进行全支架视网膜染色。对NV面积的百分比、新生血管簇的数量(NVT)和分支点(BP)进行量化。最后,用人脐静脉内皮细胞(HUVECs)研究法舒地尔对血管生成的影响。结果:实时PCR和Western印迹显示,ROCK在OIR视网膜组织中的表达在统计学上上调。此外,我们发现Fasudil显著降低了NV面积的百分比、NVT的数量和BP。结论:RhoA/ROCK可能参与了OIR的发病机制。其抑制剂Fasudil在体内可抑制视网膜NV,在体外可抑制血管生成。Fasudil可能是治疗视网膜血管疾病的一种潜在策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RhoA/ROCK Signaling Is Involved in Pathological Retinal Neovascularization.

Objective: The aim of the study was to evaluate the effect of the RhoA/ROCK inhibitor Fasudil on retinal neovascularization (NV) in vivo and angiogenesis in vitro.

Methods: C57BL/6 was used to establish an OIR model. First, RhoA/ROCK expression was first examined and compared between OIR and healthy controls. Then, we evaluated the effect of Fasudil on pathological retinal NV. Whole-mount retinal staining was performed. The percentage of NV area, the number of neovascular tufts (NVT), and branch points (BP) were quantified. Finally, human umbilical vein endothelial cells (HUVECs) were used to investigate the effect of Fasudil on angiogenesis.

Results: Real-time PCR and Western blotting showed that ROCK expression in retinal tissue was statistically upregulated in OIR. Furthermore, we found that Fasudil attenuated the percentage of NV area, the number of NVT, and BP significantly. In addition, Fasudil could suppress the proliferation and migration of HUVECs induced by VEGF.

Conclusions: RhoA/ROCK might be involved in the pathogenesis of OIR. And its inhibitor Fasudil could suppress retinal NV in vivo and angiogenesis in vitro. Fasudil may be a potential treatment strategy for retinal vascular diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
Journal of Vascular Research
Journal of Vascular Research 医学-生理学
CiteScore
3.40
自引率
0.00%
发文量
25
审稿时长
>12 weeks
期刊介绍: The ''Journal of Vascular Research'' publishes original articles and reviews of scientific excellence in vascular and microvascular biology, physiology and pathophysiology. The scope of the journal covers a broad spectrum of vascular and lymphatic research, including vascular structure, vascular function, haemodynamics, mechanics, cell signalling, intercellular communication, growth and differentiation. JVR''s ''Vascular Update'' series regularly presents state-of-the-art reviews on hot topics in vascular biology. Manuscript processing times are, consistent with stringent review, kept as short as possible due to electronic submission. All articles are published online first, ensuring rapid publication. The ''Journal of Vascular Research'' is the official journal of the European Society for Microcirculation. A biennial prize is awarded to the authors of the best paper published in the journal over the previous two years, thus encouraging young scientists working in the exciting field of vascular biology to publish their findings.
期刊最新文献
The functional unit of the lymphatic system- towards understanding the importance of a well-rehearsed interaction of lymphatic capillaries, collecting vessels and lymph nodes. Unstable coronary artery plaque features in humans are associated with higher frequency of circulating CD56bright Natural Killer Cells. Study of the Biomechanical and Histological Properties of the Thoracic Aorta of Diabetic Rats and Exposed to Cigarette Smoke. Evaluation of Metabolism-Associated Proteins in Abdominal Aortic Aneurysm. Single intraluminal delivery of a nitric oxide-donor results in inhibition of intimal thickening in the rabbit femoral artery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1