J L Hodeau, A Prat, N Boudet, N Blanc, S Arnaud, J L Hazemann, E Lahéra, O Proux, M Jacquet, P O Autran, C Dejoie, P Martinetto
{"title":"用于高分辨率x射线实验的能量和角度滤波的紧凑刚性多分析仪。第2部分。单晶梳的效率。","authors":"J L Hodeau, A Prat, N Boudet, N Blanc, S Arnaud, J L Hazemann, E Lahéra, O Proux, M Jacquet, P O Autran, C Dejoie, P Martinetto","doi":"10.1107/S1600577522011250","DOIUrl":null,"url":null,"abstract":"<p><p>Diffraction instruments using filtering by one or several analyser crystals exist since the 1980s and 1990s at synchrotron radiation sources, but, due to its low efficiency, this filtering is little used on laboratory sources. In order to overcome this limitation, the efficiency of a small diffraction filtering multi-analyzer block (MAD block) realized with a `single-crystal-comb' curved on a rigid support is demonstrated here. The geometry of this curved surface is logarithmic spiral and is optimized to allow multi-filtering over a relatively important diffraction angular range and to be also applicable over an X-ray spectral range. The efficiency of such a small rigid-compact MAD block consisting of this single-crystal-comb generating 20-50 Si(111) single-crystal blades, associated with a block of Soller collimators, is demonstrated. The angle between each crystal is 0.1°, so the measurement range of the comb is 2-5°. The geometry of this system has been optimized for operation with a synchrotron X-ray source over an energy range of 22 keV to 46 keV and could be used with laboratory X-ray sources (Ag Kα<sub>1</sub>, 22.1 keV). This MAD block complements and exploits the qualities of the `photon-counting' detectors which have very low intrinsic noise. Their joint efficacy is supported by powder pattern measurements of a LaB<sub>6</sub> reference sample and of several heterogeneous samples of cultural heritage materials, carried out at 22 keV on the D2AM beamline at the ESRF. Their signal-to-noise ratio is excellent (1000/1) and allows the detection thresholds of the measurements (from 3-1% to 0.1%) to detect minor phases in the studies of `real' heterogeneous materials to be drastically improved.</p>","PeriodicalId":17114,"journal":{"name":"Journal of Synchrotron Radiation","volume":"30 Pt 1","pages":"126-136"},"PeriodicalIF":2.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9814061/pdf/","citationCount":"0","resultStr":"{\"title\":\"A compact-rigid multi-analyser for energy and angle filtering of high-resolution X-ray experiments. Part 2. Efficiency of a single-crystal-comb.\",\"authors\":\"J L Hodeau, A Prat, N Boudet, N Blanc, S Arnaud, J L Hazemann, E Lahéra, O Proux, M Jacquet, P O Autran, C Dejoie, P Martinetto\",\"doi\":\"10.1107/S1600577522011250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diffraction instruments using filtering by one or several analyser crystals exist since the 1980s and 1990s at synchrotron radiation sources, but, due to its low efficiency, this filtering is little used on laboratory sources. In order to overcome this limitation, the efficiency of a small diffraction filtering multi-analyzer block (MAD block) realized with a `single-crystal-comb' curved on a rigid support is demonstrated here. The geometry of this curved surface is logarithmic spiral and is optimized to allow multi-filtering over a relatively important diffraction angular range and to be also applicable over an X-ray spectral range. The efficiency of such a small rigid-compact MAD block consisting of this single-crystal-comb generating 20-50 Si(111) single-crystal blades, associated with a block of Soller collimators, is demonstrated. The angle between each crystal is 0.1°, so the measurement range of the comb is 2-5°. The geometry of this system has been optimized for operation with a synchrotron X-ray source over an energy range of 22 keV to 46 keV and could be used with laboratory X-ray sources (Ag Kα<sub>1</sub>, 22.1 keV). This MAD block complements and exploits the qualities of the `photon-counting' detectors which have very low intrinsic noise. Their joint efficacy is supported by powder pattern measurements of a LaB<sub>6</sub> reference sample and of several heterogeneous samples of cultural heritage materials, carried out at 22 keV on the D2AM beamline at the ESRF. Their signal-to-noise ratio is excellent (1000/1) and allows the detection thresholds of the measurements (from 3-1% to 0.1%) to detect minor phases in the studies of `real' heterogeneous materials to be drastically improved.</p>\",\"PeriodicalId\":17114,\"journal\":{\"name\":\"Journal of Synchrotron Radiation\",\"volume\":\"30 Pt 1\",\"pages\":\"126-136\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9814061/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Synchrotron Radiation\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1107/S1600577522011250\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Synchrotron Radiation","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1107/S1600577522011250","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
A compact-rigid multi-analyser for energy and angle filtering of high-resolution X-ray experiments. Part 2. Efficiency of a single-crystal-comb.
Diffraction instruments using filtering by one or several analyser crystals exist since the 1980s and 1990s at synchrotron radiation sources, but, due to its low efficiency, this filtering is little used on laboratory sources. In order to overcome this limitation, the efficiency of a small diffraction filtering multi-analyzer block (MAD block) realized with a `single-crystal-comb' curved on a rigid support is demonstrated here. The geometry of this curved surface is logarithmic spiral and is optimized to allow multi-filtering over a relatively important diffraction angular range and to be also applicable over an X-ray spectral range. The efficiency of such a small rigid-compact MAD block consisting of this single-crystal-comb generating 20-50 Si(111) single-crystal blades, associated with a block of Soller collimators, is demonstrated. The angle between each crystal is 0.1°, so the measurement range of the comb is 2-5°. The geometry of this system has been optimized for operation with a synchrotron X-ray source over an energy range of 22 keV to 46 keV and could be used with laboratory X-ray sources (Ag Kα1, 22.1 keV). This MAD block complements and exploits the qualities of the `photon-counting' detectors which have very low intrinsic noise. Their joint efficacy is supported by powder pattern measurements of a LaB6 reference sample and of several heterogeneous samples of cultural heritage materials, carried out at 22 keV on the D2AM beamline at the ESRF. Their signal-to-noise ratio is excellent (1000/1) and allows the detection thresholds of the measurements (from 3-1% to 0.1%) to detect minor phases in the studies of `real' heterogeneous materials to be drastically improved.
期刊介绍:
Synchrotron radiation research is rapidly expanding with many new sources of radiation being created globally. Synchrotron radiation plays a leading role in pure science and in emerging technologies. The Journal of Synchrotron Radiation provides comprehensive coverage of the entire field of synchrotron radiation and free-electron laser research including instrumentation, theory, computing and scientific applications in areas such as biology, nanoscience and materials science. Rapid publication ensures an up-to-date information resource for scientists and engineers in the field.