Hui-Lin Hu, Hui-Xiu Zheng, Na Yuan, Chang-Lin Zhai, Hao Chen, Hai-Hua Pan, Gang Qian
{"title":"CircUsp9x/miR-599/stim1轴调控氧化低密度脂蛋白诱导的血管平滑肌细胞的增殖和迁移。","authors":"Hui-Lin Hu, Hui-Xiu Zheng, Na Yuan, Chang-Lin Zhai, Hao Chen, Hai-Hua Pan, Gang Qian","doi":"10.1080/10641963.2023.2280758","DOIUrl":null,"url":null,"abstract":"<p><p>Circular RNAs (circRNAs) regulate the function of vascular smooth muscle cells (VSMCs) in atherosclerosis (AS) progression. We aimed to explore the role of circUSP9X in oxidized low-density lipoprotein (ox-LDL)-induced VSMCs. Cell proliferation was assessed using cell counting kit-8 and EDU assays. Cell migration was evaluated using Transwell and wound healing assays. The interaction between circUSP9X or STIM1 and miR-599 was analyzed using dual-luciferase reporter and RNA pull-down assays. Their levels were examined using quantitative real-time PCR. CircUSP9X and STIM1 expression was increased, whereas miR-599 expression was reduced in the serum of patients with AS and ox-LDL-stimulated VSMCs. Overexpression of circUSP9X facilitated the proliferation and migration of VSMCs induced by ox-LDL. CircUSP9X sponged miR-599, which targeted STIM1. MiR-599 reversed the effects induced by circUSP9X, and STIM1 reversed the effects induced by miR-599. Taken together, CircUSP9X promoted proliferation and migration in ox-LDL-treated VSMCs via the miR-599/STIM1 axis, providing a theoretical basis for the role of circUSP9X/miR-599/STIM1 axis in AS.</p>","PeriodicalId":10333,"journal":{"name":"Clinical and Experimental Hypertension","volume":"45 1","pages":"2280758"},"PeriodicalIF":1.5000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CircUsp9x/miR-599/stim1 axis regulates proliferation and migration in vascular smooth muscle cells induced by oxidized-low density lipoprotein.\",\"authors\":\"Hui-Lin Hu, Hui-Xiu Zheng, Na Yuan, Chang-Lin Zhai, Hao Chen, Hai-Hua Pan, Gang Qian\",\"doi\":\"10.1080/10641963.2023.2280758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Circular RNAs (circRNAs) regulate the function of vascular smooth muscle cells (VSMCs) in atherosclerosis (AS) progression. We aimed to explore the role of circUSP9X in oxidized low-density lipoprotein (ox-LDL)-induced VSMCs. Cell proliferation was assessed using cell counting kit-8 and EDU assays. Cell migration was evaluated using Transwell and wound healing assays. The interaction between circUSP9X or STIM1 and miR-599 was analyzed using dual-luciferase reporter and RNA pull-down assays. Their levels were examined using quantitative real-time PCR. CircUSP9X and STIM1 expression was increased, whereas miR-599 expression was reduced in the serum of patients with AS and ox-LDL-stimulated VSMCs. Overexpression of circUSP9X facilitated the proliferation and migration of VSMCs induced by ox-LDL. CircUSP9X sponged miR-599, which targeted STIM1. MiR-599 reversed the effects induced by circUSP9X, and STIM1 reversed the effects induced by miR-599. Taken together, CircUSP9X promoted proliferation and migration in ox-LDL-treated VSMCs via the miR-599/STIM1 axis, providing a theoretical basis for the role of circUSP9X/miR-599/STIM1 axis in AS.</p>\",\"PeriodicalId\":10333,\"journal\":{\"name\":\"Clinical and Experimental Hypertension\",\"volume\":\"45 1\",\"pages\":\"2280758\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical and Experimental Hypertension\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10641963.2023.2280758\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PERIPHERAL VASCULAR DISEASE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Experimental Hypertension","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10641963.2023.2280758","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
CircUsp9x/miR-599/stim1 axis regulates proliferation and migration in vascular smooth muscle cells induced by oxidized-low density lipoprotein.
Circular RNAs (circRNAs) regulate the function of vascular smooth muscle cells (VSMCs) in atherosclerosis (AS) progression. We aimed to explore the role of circUSP9X in oxidized low-density lipoprotein (ox-LDL)-induced VSMCs. Cell proliferation was assessed using cell counting kit-8 and EDU assays. Cell migration was evaluated using Transwell and wound healing assays. The interaction between circUSP9X or STIM1 and miR-599 was analyzed using dual-luciferase reporter and RNA pull-down assays. Their levels were examined using quantitative real-time PCR. CircUSP9X and STIM1 expression was increased, whereas miR-599 expression was reduced in the serum of patients with AS and ox-LDL-stimulated VSMCs. Overexpression of circUSP9X facilitated the proliferation and migration of VSMCs induced by ox-LDL. CircUSP9X sponged miR-599, which targeted STIM1. MiR-599 reversed the effects induced by circUSP9X, and STIM1 reversed the effects induced by miR-599. Taken together, CircUSP9X promoted proliferation and migration in ox-LDL-treated VSMCs via the miR-599/STIM1 axis, providing a theoretical basis for the role of circUSP9X/miR-599/STIM1 axis in AS.
期刊介绍:
Clinical and Experimental Hypertension is a reputable journal that has converted to a full Open Access format starting from Volume 45 in 2023. While previous volumes are still accessible through a Pay to Read model, the journal now provides free and open access to its content. It serves as an international platform for the exchange of up-to-date scientific and clinical information concerning both human and animal hypertension. The journal publishes a wide range of articles, including full research papers, solicited and unsolicited reviews, and commentaries. Through these publications, the journal aims to enhance current understanding and support the timely detection, management, control, and prevention of hypertension-related conditions.
One notable aspect of Clinical and Experimental Hypertension is its coverage of special issues that focus on the proceedings of symposia dedicated to hypertension research. This feature allows researchers and clinicians to delve deeper into the latest advancements in this field.
The journal is abstracted and indexed in several renowned databases, including Pharmacoeconomics and Outcomes News (Online), Reactions Weekly (Online), CABI, EBSCOhost, Elsevier BV, International Atomic Energy Agency, and the National Library of Medicine, among others. These affiliations ensure that the journal's content receives broad visibility and facilitates its discoverability by professionals and researchers in related disciplines.