瑞舒伐他汀:生物利用度评估及体内外相关性研究

IF 2.8 4区 医学 Q2 PHARMACOLOGY & PHARMACY Current drug delivery Pub Date : 2024-01-01 DOI:10.2174/1567201820666221220104244
Nghia Thi Phan, Yen Thi Hai Tran, Linh Tran Nguyen, Yen Kieu Hoang, Cuong Khac Bui, Hoa Dang Nguyen, Giang Thi Thu Vu
{"title":"瑞舒伐他汀:生物利用度评估及体内外相关性研究","authors":"Nghia Thi Phan, Yen Thi Hai Tran, Linh Tran Nguyen, Yen Kieu Hoang, Cuong Khac Bui, Hoa Dang Nguyen, Giang Thi Thu Vu","doi":"10.2174/1567201820666221220104244","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Rosuvastatin, most commonly used in the form of calcium salt, belongs to the statin groups of synthetic antihyperlipidemic agents. Rosuvastatin possesses high permeability, however, its aqueous solubility is poor, causing a slow dissolution rate in water. Consequently, this dissolution rate has a decisive role in the release and absorption of rosuvastatin in the gastrointestinal tube.</p><p><strong>Objective: </strong>The aims of this study were to evaluate the absorption of the drug from the self-nano emulsifying drug delivery system of rosuvastatin (Ros SNEDDS) compared to rosuvastatin substance and to develop a level-A <i>in vitro-in vivo</i> correlation (IVIVC) for Ros SNEDDS.</p><p><strong>Methods: </strong>An in-house developed LC-MS/MS method was used to determine the concentrations of rosuvastatin in dog plasma. Six beagle dogs received an intravenous dose, Ros SNEDDS, rosuvastatin substance. <i>In vitro</i> dissolution of the Ros SNEDDS was carried out with different conditions. Correlation models were developed from the dissolution and absorption results of Ros SNEDDS.</p><p><strong>Results: </strong>The results showed a 1.7-fold enhanced oral bioavailability and 2.1-time increase of rosuvastatin C<sub>max</sub> in Ros SNEDDS form, compared to the rosuvastatin substance. A 900 ml dissolution medium of pH of 6.6 has demonstrated its suitability, the <i>in vitro</i> dissolution model was studied and supported by the Weibull equation with a weighting factor of 1/y<sup>2</sup> as it presented the lowest values of AIC.</p><p><strong>Conclusion: </strong>Ros SNEDDS demonstrated higher bioavailability of rosuvastatin in comparison to rosuvastatin substance and established a level A IVIVC used in future bioequivalence trials.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":" ","pages":"734-743"},"PeriodicalIF":2.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self Nanoelmusifying Drug Delivery System of Rosuvastatin: Bioavailability Evaluation and <i>In vitro</i> - <i>In vivo</i> Correlation.\",\"authors\":\"Nghia Thi Phan, Yen Thi Hai Tran, Linh Tran Nguyen, Yen Kieu Hoang, Cuong Khac Bui, Hoa Dang Nguyen, Giang Thi Thu Vu\",\"doi\":\"10.2174/1567201820666221220104244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Rosuvastatin, most commonly used in the form of calcium salt, belongs to the statin groups of synthetic antihyperlipidemic agents. Rosuvastatin possesses high permeability, however, its aqueous solubility is poor, causing a slow dissolution rate in water. Consequently, this dissolution rate has a decisive role in the release and absorption of rosuvastatin in the gastrointestinal tube.</p><p><strong>Objective: </strong>The aims of this study were to evaluate the absorption of the drug from the self-nano emulsifying drug delivery system of rosuvastatin (Ros SNEDDS) compared to rosuvastatin substance and to develop a level-A <i>in vitro-in vivo</i> correlation (IVIVC) for Ros SNEDDS.</p><p><strong>Methods: </strong>An in-house developed LC-MS/MS method was used to determine the concentrations of rosuvastatin in dog plasma. Six beagle dogs received an intravenous dose, Ros SNEDDS, rosuvastatin substance. <i>In vitro</i> dissolution of the Ros SNEDDS was carried out with different conditions. Correlation models were developed from the dissolution and absorption results of Ros SNEDDS.</p><p><strong>Results: </strong>The results showed a 1.7-fold enhanced oral bioavailability and 2.1-time increase of rosuvastatin C<sub>max</sub> in Ros SNEDDS form, compared to the rosuvastatin substance. A 900 ml dissolution medium of pH of 6.6 has demonstrated its suitability, the <i>in vitro</i> dissolution model was studied and supported by the Weibull equation with a weighting factor of 1/y<sup>2</sup> as it presented the lowest values of AIC.</p><p><strong>Conclusion: </strong>Ros SNEDDS demonstrated higher bioavailability of rosuvastatin in comparison to rosuvastatin substance and established a level A IVIVC used in future bioequivalence trials.</p>\",\"PeriodicalId\":10842,\"journal\":{\"name\":\"Current drug delivery\",\"volume\":\" \",\"pages\":\"734-743\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current drug delivery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/1567201820666221220104244\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1567201820666221220104244","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

背景:瑞舒伐他汀属于他汀类合成降血脂药物,最常用的形式是钙盐。瑞舒伐他汀具有较高的渗透性,但其水溶性较差,因此在水中的溶解速度较慢。因此,这种溶解速度对罗伐他汀在胃肠道中的释放和吸收起着决定性作用:本研究旨在评估罗伐他汀自纳米乳化给药系统(Ros SNEDDS)与罗伐他汀物质相比的药物吸收情况,并建立罗伐他汀自纳米乳化给药系统的体外-体内一级相关性(IVIVC):采用自行开发的 LC-MS/MS 方法测定狗血浆中的罗伐他汀浓度。六只小猎犬静脉注射了罗苏伐他汀药物 Ros SNEDDS。在不同的条件下对罗苏伐他汀 SNEDDS 进行了体外溶解。根据Ros SNEDDS的溶解和吸收结果建立了相关模型:结果表明,与罗伐他汀物质相比,罗氏 SNEDDS 的口服生物利用度提高了 1.7 倍,罗伐他汀的 Cmax 提高了 2.1 倍。900 毫升 pH 值为 6.6 的溶解介质证明了它的适用性,体外溶解模型经研究后得到了加权因子为 1/y2 的 Weibull 方程的支持,因为它的 AIC 值最低:罗斯 SNEDDS 与罗伐他汀物质相比,证明了罗伐他汀更高的生物利用度,并确立了用于未来生物等效性试验的 A 级 IVIVC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Self Nanoelmusifying Drug Delivery System of Rosuvastatin: Bioavailability Evaluation and In vitro - In vivo Correlation.

Background: Rosuvastatin, most commonly used in the form of calcium salt, belongs to the statin groups of synthetic antihyperlipidemic agents. Rosuvastatin possesses high permeability, however, its aqueous solubility is poor, causing a slow dissolution rate in water. Consequently, this dissolution rate has a decisive role in the release and absorption of rosuvastatin in the gastrointestinal tube.

Objective: The aims of this study were to evaluate the absorption of the drug from the self-nano emulsifying drug delivery system of rosuvastatin (Ros SNEDDS) compared to rosuvastatin substance and to develop a level-A in vitro-in vivo correlation (IVIVC) for Ros SNEDDS.

Methods: An in-house developed LC-MS/MS method was used to determine the concentrations of rosuvastatin in dog plasma. Six beagle dogs received an intravenous dose, Ros SNEDDS, rosuvastatin substance. In vitro dissolution of the Ros SNEDDS was carried out with different conditions. Correlation models were developed from the dissolution and absorption results of Ros SNEDDS.

Results: The results showed a 1.7-fold enhanced oral bioavailability and 2.1-time increase of rosuvastatin Cmax in Ros SNEDDS form, compared to the rosuvastatin substance. A 900 ml dissolution medium of pH of 6.6 has demonstrated its suitability, the in vitro dissolution model was studied and supported by the Weibull equation with a weighting factor of 1/y2 as it presented the lowest values of AIC.

Conclusion: Ros SNEDDS demonstrated higher bioavailability of rosuvastatin in comparison to rosuvastatin substance and established a level A IVIVC used in future bioequivalence trials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current drug delivery
Current drug delivery PHARMACOLOGY & PHARMACY-
CiteScore
5.10
自引率
4.20%
发文量
170
期刊介绍: Current Drug Delivery aims to publish peer-reviewed articles, research articles, short and in-depth reviews, and drug clinical trials studies in the rapidly developing field of drug delivery. Modern drug research aims to build delivery properties of a drug at the design phase, however in many cases this idea cannot be met and the development of delivery systems becomes as important as the development of the drugs themselves. The journal aims to cover the latest outstanding developments in drug and vaccine delivery employing physical, physico-chemical and chemical methods. The drugs include a wide range of bioactive compounds from simple pharmaceuticals to peptides, proteins, nucleotides, nucleosides and sugars. The journal will also report progress in the fields of transport routes and mechanisms including efflux proteins and multi-drug resistance. The journal is essential for all pharmaceutical scientists involved in drug design, development and delivery.
期刊最新文献
Enhanced Therapeutic Potential of Liposome-Coated Bushen Jianpi Recipe for Hepatocellular Carcinoma Exploring the Insights on Exosomes and their Utility in Treating Ophthalmic Disease: Delving into the Clinical Approval and Present Trials Lignin Nanoparticles as pH-responsive Nanocarriers for Gastric-Irritant Oral Drug Aspirin Lipid Nanoparticles as a Platform for miRNA and siRNA Delivery in Hepatocellular Carcinoma Applications of Inorganic Nanomaterials against Tuberculosis: A Comprehensive Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1