基于多组学生物学网络的前列腺癌驱动模块识别

IF 1.9 4区 生物学 Q4 CELL BIOLOGY IET Systems Biology Pub Date : 2022-08-30 DOI:10.1049/syb2.12050
Zhongli Chen, Biting Liang, Yingfu Wu, Haoru Zhou, Yuchen Wang, Hao Wu
{"title":"基于多组学生物学网络的前列腺癌驱动模块识别","authors":"Zhongli Chen,&nbsp;Biting Liang,&nbsp;Yingfu Wu,&nbsp;Haoru Zhou,&nbsp;Yuchen Wang,&nbsp;Hao Wu","doi":"10.1049/syb2.12050","DOIUrl":null,"url":null,"abstract":"<p>The development of sequencing technology has promoted the expansion of cancer genome data. It is necessary to identify the pathogenesis of cancer at the molecular level and explore reliable treatment methods and precise drug targets in cancer by identifying carcinogenic functional modules in massive multi-omics data. However, there are still limitations to identifying carcinogenic driver modules by utilising genetic characteristics simply. Therefore, this study proposes a computational method, NetAP, to identify driver modules in prostate cancer. Firstly, high mutual exclusivity, high coverage, and high topological similarity between genes are integrated to construct a weight function, which calculates the weight of gene pairs in a biological network. Secondly, the random walk method is utilised to reevaluate the strength of interaction among genes. Finally, the optimal driver modules are identified by utilising the affinity propagation algorithm. According to the results, the authors’ method identifies more validated driver genes and driver modules compared with the other previous methods. Thus, the proposed NetAP method can identify carcinogenic driver modules effectively and reliably, and the experimental results provide a powerful basis for cancer diagnosis, treatment and drug targets.</p>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":"16 6","pages":"187-200"},"PeriodicalIF":1.9000,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e8/7f/SYB2-16-187.PMC9675413.pdf","citationCount":"1","resultStr":"{\"title\":\"Identifying driver modules based on multi-omics biological networks in prostate cancer\",\"authors\":\"Zhongli Chen,&nbsp;Biting Liang,&nbsp;Yingfu Wu,&nbsp;Haoru Zhou,&nbsp;Yuchen Wang,&nbsp;Hao Wu\",\"doi\":\"10.1049/syb2.12050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The development of sequencing technology has promoted the expansion of cancer genome data. It is necessary to identify the pathogenesis of cancer at the molecular level and explore reliable treatment methods and precise drug targets in cancer by identifying carcinogenic functional modules in massive multi-omics data. However, there are still limitations to identifying carcinogenic driver modules by utilising genetic characteristics simply. Therefore, this study proposes a computational method, NetAP, to identify driver modules in prostate cancer. Firstly, high mutual exclusivity, high coverage, and high topological similarity between genes are integrated to construct a weight function, which calculates the weight of gene pairs in a biological network. Secondly, the random walk method is utilised to reevaluate the strength of interaction among genes. Finally, the optimal driver modules are identified by utilising the affinity propagation algorithm. According to the results, the authors’ method identifies more validated driver genes and driver modules compared with the other previous methods. Thus, the proposed NetAP method can identify carcinogenic driver modules effectively and reliably, and the experimental results provide a powerful basis for cancer diagnosis, treatment and drug targets.</p>\",\"PeriodicalId\":50379,\"journal\":{\"name\":\"IET Systems Biology\",\"volume\":\"16 6\",\"pages\":\"187-200\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e8/7f/SYB2-16-187.PMC9675413.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Systems Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/syb2.12050\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/syb2.12050","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

测序技术的发展促进了癌症基因组数据的扩展。在海量多组学数据中识别致癌功能模块,有必要在分子水平上识别癌症的发病机制,探索癌症中可靠的治疗方法和精确的药物靶点。然而,通过简单地利用遗传特征来识别致癌驱动模块仍然存在局限性。因此,本研究提出了一种计算方法NetAP来识别前列腺癌的驱动模块。首先,将基因间的高互斥性、高覆盖度和高拓扑相似性整合构建权重函数,计算生物网络中基因对的权重;其次,利用随机游走法重新评估基因间相互作用的强度。最后,利用亲和传播算法确定最优驱动模块。结果表明,与其他方法相比,该方法鉴定出了更多经过验证的驱动基因和驱动模块。因此,提出的NetAP方法可以有效可靠地识别致癌驱动模块,实验结果为癌症的诊断、治疗和药物靶点提供了有力的依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identifying driver modules based on multi-omics biological networks in prostate cancer

The development of sequencing technology has promoted the expansion of cancer genome data. It is necessary to identify the pathogenesis of cancer at the molecular level and explore reliable treatment methods and precise drug targets in cancer by identifying carcinogenic functional modules in massive multi-omics data. However, there are still limitations to identifying carcinogenic driver modules by utilising genetic characteristics simply. Therefore, this study proposes a computational method, NetAP, to identify driver modules in prostate cancer. Firstly, high mutual exclusivity, high coverage, and high topological similarity between genes are integrated to construct a weight function, which calculates the weight of gene pairs in a biological network. Secondly, the random walk method is utilised to reevaluate the strength of interaction among genes. Finally, the optimal driver modules are identified by utilising the affinity propagation algorithm. According to the results, the authors’ method identifies more validated driver genes and driver modules compared with the other previous methods. Thus, the proposed NetAP method can identify carcinogenic driver modules effectively and reliably, and the experimental results provide a powerful basis for cancer diagnosis, treatment and drug targets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Systems Biology
IET Systems Biology 生物-数学与计算生物学
CiteScore
4.20
自引率
4.30%
发文量
17
审稿时长
>12 weeks
期刊介绍: IET Systems Biology covers intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. Papers that analyse genomic data in order to identify variables and basic relationships between them are considered if the results provide a basis for mathematical modelling and simulation of cellular dynamics. Manuscripts on molecular and cell biological studies are encouraged if the aim is a systems approach to dynamic interactions within and between cells. The scope includes the following topics: Genomics, transcriptomics, proteomics, metabolomics, cells, tissue and the physiome; molecular and cellular interaction, gene, cell and protein function; networks and pathways; metabolism and cell signalling; dynamics, regulation and control; systems, signals, and information; experimental data analysis; mathematical modelling, simulation and theoretical analysis; biological modelling, simulation, prediction and control; methodologies, databases, tools and algorithms for modelling and simulation; modelling, analysis and control of biological networks; synthetic biology and bioengineering based on systems biology.
期刊最新文献
Identification of CCR7 and CBX6 as key biomarkers in abdominal aortic aneurysm: Insights from multi-omics data and machine learning analysis. Identification of co-localised transcription factors based on paired motifs analysis. DDANet: A deep dilated attention network for intracerebral haemorrhage segmentation. Human essential gene identification based on feature fusion and feature screening. Inference and analysis of cell-cell communication of non-myeloid circulating cells in late sepsis based on single-cell RNA-seq.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1