M. Cheralathan, C. Sampedro, J. Roldán, F. Gámiz, G. Iannaccone, E. Sangiorgi, B. Iñíguez
{"title":"模拟纳米双栅mosfet先进输运模型的漏极电流解析模型","authors":"M. Cheralathan, C. Sampedro, J. Roldán, F. Gámiz, G. Iannaccone, E. Sangiorgi, B. Iñíguez","doi":"10.1109/ULIS.2011.5757954","DOIUrl":null,"url":null,"abstract":"In this paper we extend a Double Gate (DG) MOSFET model to nanometer technology nodes in order to include the hydrodynamic and quantum mechanical effects, and we show that the final model can accurately reproduce simulation results of the advanced transport models. Template devices representative of 22nm and 16nm DG MOSFETs were used to validate the model. The final model includes the main short-channel and nanoscale effects, such as mobility degradation, channel length modulation, drain-induced barrier lowering, overshoot velocity effects and quantum mechanical effects.","PeriodicalId":146779,"journal":{"name":"Ulis 2011 Ultimate Integration on Silicon","volume":"238 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Analytical drain current model reproducing advanced transport models in nanoscale double-gate (DG) MOSFETs\",\"authors\":\"M. Cheralathan, C. Sampedro, J. Roldán, F. Gámiz, G. Iannaccone, E. Sangiorgi, B. Iñíguez\",\"doi\":\"10.1109/ULIS.2011.5757954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we extend a Double Gate (DG) MOSFET model to nanometer technology nodes in order to include the hydrodynamic and quantum mechanical effects, and we show that the final model can accurately reproduce simulation results of the advanced transport models. Template devices representative of 22nm and 16nm DG MOSFETs were used to validate the model. The final model includes the main short-channel and nanoscale effects, such as mobility degradation, channel length modulation, drain-induced barrier lowering, overshoot velocity effects and quantum mechanical effects.\",\"PeriodicalId\":146779,\"journal\":{\"name\":\"Ulis 2011 Ultimate Integration on Silicon\",\"volume\":\"238 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ulis 2011 Ultimate Integration on Silicon\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ULIS.2011.5757954\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ulis 2011 Ultimate Integration on Silicon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULIS.2011.5757954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analytical drain current model reproducing advanced transport models in nanoscale double-gate (DG) MOSFETs
In this paper we extend a Double Gate (DG) MOSFET model to nanometer technology nodes in order to include the hydrodynamic and quantum mechanical effects, and we show that the final model can accurately reproduce simulation results of the advanced transport models. Template devices representative of 22nm and 16nm DG MOSFETs were used to validate the model. The final model includes the main short-channel and nanoscale effects, such as mobility degradation, channel length modulation, drain-induced barrier lowering, overshoot velocity effects and quantum mechanical effects.