基于机器学习的电池状态估计方法综述

Yingjian Zhuge, Hengzhao Yang, Hao Wang
{"title":"基于机器学习的电池状态估计方法综述","authors":"Yingjian Zhuge, Hengzhao Yang, Hao Wang","doi":"10.1109/APEC43580.2023.10131605","DOIUrl":null,"url":null,"abstract":"To ensure safe usage and robust performance of energy storage batteries, accurate state-of-charge (SOC) and state-of-health (SOH) estimations are required. Due to recent breakthroughs in machine learning and artificial intelligence methods, data-driven methods have attracted increased attention. This paper reports state-of-the-art research progress in machine learning-enabled methods for SOC and SOH estimations. Comprehensive comparisons are made in terms of the dataset, estimation accuracy, and battery type to provide a clear picture for SOC and SOH estimation. Moreover, the challenges and research opportunities on future SOC and SOH estimation are disclosed.","PeriodicalId":151216,"journal":{"name":"2023 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Overview of Machine Learning-Enabled Battery State Estimation Methods\",\"authors\":\"Yingjian Zhuge, Hengzhao Yang, Hao Wang\",\"doi\":\"10.1109/APEC43580.2023.10131605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To ensure safe usage and robust performance of energy storage batteries, accurate state-of-charge (SOC) and state-of-health (SOH) estimations are required. Due to recent breakthroughs in machine learning and artificial intelligence methods, data-driven methods have attracted increased attention. This paper reports state-of-the-art research progress in machine learning-enabled methods for SOC and SOH estimations. Comprehensive comparisons are made in terms of the dataset, estimation accuracy, and battery type to provide a clear picture for SOC and SOH estimation. Moreover, the challenges and research opportunities on future SOC and SOH estimation are disclosed.\",\"PeriodicalId\":151216,\"journal\":{\"name\":\"2023 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APEC43580.2023.10131605\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC43580.2023.10131605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了确保储能电池的安全使用和强大的性能,需要准确的充电状态(SOC)和健康状态(SOH)估计。由于最近机器学习和人工智能方法的突破,数据驱动的方法引起了越来越多的关注。本文报告了基于机器学习的SOC和SOH估计方法的最新研究进展。在数据集、估计精度和电池类型方面进行综合比较,为SOC和SOH的估计提供清晰的画面。展望了未来SOC和SOH估算面临的挑战和研究机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Overview of Machine Learning-Enabled Battery State Estimation Methods
To ensure safe usage and robust performance of energy storage batteries, accurate state-of-charge (SOC) and state-of-health (SOH) estimations are required. Due to recent breakthroughs in machine learning and artificial intelligence methods, data-driven methods have attracted increased attention. This paper reports state-of-the-art research progress in machine learning-enabled methods for SOC and SOH estimations. Comprehensive comparisons are made in terms of the dataset, estimation accuracy, and battery type to provide a clear picture for SOC and SOH estimation. Moreover, the challenges and research opportunities on future SOC and SOH estimation are disclosed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advanced Front-end Monitoring Scheme for Inductive Power Transfer Systems Based on Random Forest Regression An MPC based Power Management Method for Renewable Energy Hydrogen based DC Microgrids Overview of Machine Learning-Enabled Battery State Estimation Methods Ultra-Wideband Unidirectional Reset-Less Rogowski Coil Switch Current Sensor Topology for High-Frequency DC-DC Power Converters Common Source Inductance Compensation Technique for Dynamic Current Balancing in SiC MOSFETs Parallel Operations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1