Gustavo B. P. Barbosa, Eduardo C. Da Silva, A. C. Leite
{"title":"轮式移动机器人自主行作物跟踪鲁棒图像视觉伺服*","authors":"Gustavo B. P. Barbosa, Eduardo C. Da Silva, A. C. Leite","doi":"10.1109/CASE49439.2021.9551667","DOIUrl":null,"url":null,"abstract":"In this work, we present a new robust vision-based controller for wheeled mobile robots, equipped with a fixed monocular camera, to perform autonomous navigation in agricultural fields accurately. Here, we consider the existence of uncertainties in the parameters of the robot-camera system and external disturbances caused by high driving velocities, sparse plants, and terrain unevenness. Then, we design a robust image-based visual servoing (rIBVS) approach based on the sliding mode control (SMC) method for robot motion stabilization, even under the presence of such inaccuracies and perturbations. The vision-based controller, based on column and row primitives, is slightly modified to include a robustness term into the original feedback control laws to ensure successful row crop reaching and following tasks. We employ the Lyapunov stability theory to verify the stability and robustness properties of the overall closed-loop system. 3D computer simulations are carried out in the ROS-Gazebo platform, an open-source robotics simulator, using a differential-drive mobile robot (DDMR) in an ad-hoc developed row crop environment to illustrate the effectiveness and feasibility of the proposed control methodology.","PeriodicalId":232083,"journal":{"name":"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Robust Image-based Visual Servoing for Autonomous Row Crop Following with Wheeled Mobile Robots*\",\"authors\":\"Gustavo B. P. Barbosa, Eduardo C. Da Silva, A. C. Leite\",\"doi\":\"10.1109/CASE49439.2021.9551667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we present a new robust vision-based controller for wheeled mobile robots, equipped with a fixed monocular camera, to perform autonomous navigation in agricultural fields accurately. Here, we consider the existence of uncertainties in the parameters of the robot-camera system and external disturbances caused by high driving velocities, sparse plants, and terrain unevenness. Then, we design a robust image-based visual servoing (rIBVS) approach based on the sliding mode control (SMC) method for robot motion stabilization, even under the presence of such inaccuracies and perturbations. The vision-based controller, based on column and row primitives, is slightly modified to include a robustness term into the original feedback control laws to ensure successful row crop reaching and following tasks. We employ the Lyapunov stability theory to verify the stability and robustness properties of the overall closed-loop system. 3D computer simulations are carried out in the ROS-Gazebo platform, an open-source robotics simulator, using a differential-drive mobile robot (DDMR) in an ad-hoc developed row crop environment to illustrate the effectiveness and feasibility of the proposed control methodology.\",\"PeriodicalId\":232083,\"journal\":{\"name\":\"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CASE49439.2021.9551667\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASE49439.2021.9551667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robust Image-based Visual Servoing for Autonomous Row Crop Following with Wheeled Mobile Robots*
In this work, we present a new robust vision-based controller for wheeled mobile robots, equipped with a fixed monocular camera, to perform autonomous navigation in agricultural fields accurately. Here, we consider the existence of uncertainties in the parameters of the robot-camera system and external disturbances caused by high driving velocities, sparse plants, and terrain unevenness. Then, we design a robust image-based visual servoing (rIBVS) approach based on the sliding mode control (SMC) method for robot motion stabilization, even under the presence of such inaccuracies and perturbations. The vision-based controller, based on column and row primitives, is slightly modified to include a robustness term into the original feedback control laws to ensure successful row crop reaching and following tasks. We employ the Lyapunov stability theory to verify the stability and robustness properties of the overall closed-loop system. 3D computer simulations are carried out in the ROS-Gazebo platform, an open-source robotics simulator, using a differential-drive mobile robot (DDMR) in an ad-hoc developed row crop environment to illustrate the effectiveness and feasibility of the proposed control methodology.