轮式移动机器人自主行作物跟踪鲁棒图像视觉伺服*

Gustavo B. P. Barbosa, Eduardo C. Da Silva, A. C. Leite
{"title":"轮式移动机器人自主行作物跟踪鲁棒图像视觉伺服*","authors":"Gustavo B. P. Barbosa, Eduardo C. Da Silva, A. C. Leite","doi":"10.1109/CASE49439.2021.9551667","DOIUrl":null,"url":null,"abstract":"In this work, we present a new robust vision-based controller for wheeled mobile robots, equipped with a fixed monocular camera, to perform autonomous navigation in agricultural fields accurately. Here, we consider the existence of uncertainties in the parameters of the robot-camera system and external disturbances caused by high driving velocities, sparse plants, and terrain unevenness. Then, we design a robust image-based visual servoing (rIBVS) approach based on the sliding mode control (SMC) method for robot motion stabilization, even under the presence of such inaccuracies and perturbations. The vision-based controller, based on column and row primitives, is slightly modified to include a robustness term into the original feedback control laws to ensure successful row crop reaching and following tasks. We employ the Lyapunov stability theory to verify the stability and robustness properties of the overall closed-loop system. 3D computer simulations are carried out in the ROS-Gazebo platform, an open-source robotics simulator, using a differential-drive mobile robot (DDMR) in an ad-hoc developed row crop environment to illustrate the effectiveness and feasibility of the proposed control methodology.","PeriodicalId":232083,"journal":{"name":"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Robust Image-based Visual Servoing for Autonomous Row Crop Following with Wheeled Mobile Robots*\",\"authors\":\"Gustavo B. P. Barbosa, Eduardo C. Da Silva, A. C. Leite\",\"doi\":\"10.1109/CASE49439.2021.9551667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we present a new robust vision-based controller for wheeled mobile robots, equipped with a fixed monocular camera, to perform autonomous navigation in agricultural fields accurately. Here, we consider the existence of uncertainties in the parameters of the robot-camera system and external disturbances caused by high driving velocities, sparse plants, and terrain unevenness. Then, we design a robust image-based visual servoing (rIBVS) approach based on the sliding mode control (SMC) method for robot motion stabilization, even under the presence of such inaccuracies and perturbations. The vision-based controller, based on column and row primitives, is slightly modified to include a robustness term into the original feedback control laws to ensure successful row crop reaching and following tasks. We employ the Lyapunov stability theory to verify the stability and robustness properties of the overall closed-loop system. 3D computer simulations are carried out in the ROS-Gazebo platform, an open-source robotics simulator, using a differential-drive mobile robot (DDMR) in an ad-hoc developed row crop environment to illustrate the effectiveness and feasibility of the proposed control methodology.\",\"PeriodicalId\":232083,\"journal\":{\"name\":\"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CASE49439.2021.9551667\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASE49439.2021.9551667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在这项工作中,我们提出了一种新的基于鲁棒视觉的轮式移动机器人控制器,该控制器配备了固定的单目摄像机,可以在农田中精确地进行自主导航。在这里,我们考虑了机器人-相机系统参数的不确定性以及高行驶速度、稀疏植物和地形不平整引起的外部干扰。然后,我们设计了一种基于滑模控制(SMC)方法的鲁棒图像视觉伺服(rIBVS)方法,用于机器人运动稳定,即使在存在这些不准确性和摄动的情况下。基于视觉的控制器,基于列和行原语,稍加修改,在原始反馈控制律中加入鲁棒性项,以确保行作物成功到达和后续任务。利用李雅普诺夫稳定性理论验证了整个闭环系统的稳定性和鲁棒性。在开源机器人模拟器ROS-Gazebo平台上进行了三维计算机仿真,在特别开发的行作物环境中使用差动驱动移动机器人(DDMR)来说明所提出的控制方法的有效性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust Image-based Visual Servoing for Autonomous Row Crop Following with Wheeled Mobile Robots*
In this work, we present a new robust vision-based controller for wheeled mobile robots, equipped with a fixed monocular camera, to perform autonomous navigation in agricultural fields accurately. Here, we consider the existence of uncertainties in the parameters of the robot-camera system and external disturbances caused by high driving velocities, sparse plants, and terrain unevenness. Then, we design a robust image-based visual servoing (rIBVS) approach based on the sliding mode control (SMC) method for robot motion stabilization, even under the presence of such inaccuracies and perturbations. The vision-based controller, based on column and row primitives, is slightly modified to include a robustness term into the original feedback control laws to ensure successful row crop reaching and following tasks. We employ the Lyapunov stability theory to verify the stability and robustness properties of the overall closed-loop system. 3D computer simulations are carried out in the ROS-Gazebo platform, an open-source robotics simulator, using a differential-drive mobile robot (DDMR) in an ad-hoc developed row crop environment to illustrate the effectiveness and feasibility of the proposed control methodology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Planar Pushing of Unknown Objects Using a Large-Scale Simulation Dataset and Few-Shot Learning A configurator for supervisory controllers of roadside systems Maintaining Connectivity in Multi-Rover Networks for Lunar Exploration Missions VLC-SE: Visual-Lengthwise Configuration Self-Estimator of Continuum Robots Multi-zone indoor temperature prediction based on Graph Attention Network and Gated Recurrent Unit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1