{"title":"基于多分辨率局部模式和集成支持向量机的HEp-2细胞分类","authors":"Siyamalan Manivannan, Wenqi Li, Shazia Akbar, Ruixuan Wang, Jianguo Zhang, S. McKenna","doi":"10.1109/I3A.2014.18","DOIUrl":null,"url":null,"abstract":"We describe a pattern recognition system for classifying immunofluorescence images of HEp-2 cells into six classes: homogeneous, speckled, nucleolar, centromere, golgi, and nuclear membrane. We use locality-constrained linear coding to encode multiple local features and two-level cell pyramids to capture spatial structure of cells. An ensemble of linear support vector machines is used to classify each cell image. Leave-one-specimen-out experiments on the I3A Contest Task 1 training data set predicted a mean class accuracy of 80.25%.","PeriodicalId":103785,"journal":{"name":"2014 1st Workshop on Pattern Recognition Techniques for Indirect Immunofluorescence Images","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"HEp-2 Cell Classification Using Multi-resolution Local Patterns and Ensemble SVMs\",\"authors\":\"Siyamalan Manivannan, Wenqi Li, Shazia Akbar, Ruixuan Wang, Jianguo Zhang, S. McKenna\",\"doi\":\"10.1109/I3A.2014.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a pattern recognition system for classifying immunofluorescence images of HEp-2 cells into six classes: homogeneous, speckled, nucleolar, centromere, golgi, and nuclear membrane. We use locality-constrained linear coding to encode multiple local features and two-level cell pyramids to capture spatial structure of cells. An ensemble of linear support vector machines is used to classify each cell image. Leave-one-specimen-out experiments on the I3A Contest Task 1 training data set predicted a mean class accuracy of 80.25%.\",\"PeriodicalId\":103785,\"journal\":{\"name\":\"2014 1st Workshop on Pattern Recognition Techniques for Indirect Immunofluorescence Images\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 1st Workshop on Pattern Recognition Techniques for Indirect Immunofluorescence Images\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I3A.2014.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 1st Workshop on Pattern Recognition Techniques for Indirect Immunofluorescence Images","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I3A.2014.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
HEp-2 Cell Classification Using Multi-resolution Local Patterns and Ensemble SVMs
We describe a pattern recognition system for classifying immunofluorescence images of HEp-2 cells into six classes: homogeneous, speckled, nucleolar, centromere, golgi, and nuclear membrane. We use locality-constrained linear coding to encode multiple local features and two-level cell pyramids to capture spatial structure of cells. An ensemble of linear support vector machines is used to classify each cell image. Leave-one-specimen-out experiments on the I3A Contest Task 1 training data set predicted a mean class accuracy of 80.25%.