折射率结构参数建模:一种ResNet方法

Christopher Lamprecht, P. Bekhrad, H. Ivanov, E. Leitgeb
{"title":"折射率结构参数建模:一种ResNet方法","authors":"Christopher Lamprecht, P. Bekhrad, H. Ivanov, E. Leitgeb","doi":"10.1109/CoBCom49975.2020.9174186","DOIUrl":null,"url":null,"abstract":"Various atmospheric effects have a negative influence on optical signals, especially in the troposphere, which must be taken into account in free space optical (FSO) communication systems. To obtain a quantitative estimate of these effects, different mathematical models are used, often based on empirical data from around the world. The main problem with existing models is the limited accuracy, due to the different meteorological conditions at different locations on earth. We propose a new approach of modelling the refractive index structure parameter using residual neural networks (ResNets). New models, tailored to the meteorological conditions at any place on earth, can be easily created, which yields in a more accurate estimation of the refractive index profile.","PeriodicalId":442802,"journal":{"name":"2020 International Conference on Broadband Communications for Next Generation Networks and Multimedia Applications (CoBCom)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Modelling the Refractive Index Structure Parameter: A ResNet Approach\",\"authors\":\"Christopher Lamprecht, P. Bekhrad, H. Ivanov, E. Leitgeb\",\"doi\":\"10.1109/CoBCom49975.2020.9174186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Various atmospheric effects have a negative influence on optical signals, especially in the troposphere, which must be taken into account in free space optical (FSO) communication systems. To obtain a quantitative estimate of these effects, different mathematical models are used, often based on empirical data from around the world. The main problem with existing models is the limited accuracy, due to the different meteorological conditions at different locations on earth. We propose a new approach of modelling the refractive index structure parameter using residual neural networks (ResNets). New models, tailored to the meteorological conditions at any place on earth, can be easily created, which yields in a more accurate estimation of the refractive index profile.\",\"PeriodicalId\":442802,\"journal\":{\"name\":\"2020 International Conference on Broadband Communications for Next Generation Networks and Multimedia Applications (CoBCom)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Broadband Communications for Next Generation Networks and Multimedia Applications (CoBCom)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CoBCom49975.2020.9174186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Broadband Communications for Next Generation Networks and Multimedia Applications (CoBCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CoBCom49975.2020.9174186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

各种大气效应对光信号,特别是对流层中的光信号有负面影响,这在自由空间光学通信系统中必须加以考虑。为了获得对这些影响的定量估计,使用了不同的数学模型,通常基于来自世界各地的经验数据。由于地球上不同地点的气象条件不同,现有模式的主要问题是精度有限。提出了一种利用残差神经网络(ResNets)对折射率结构参数进行建模的新方法。根据地球上任何地方的气象条件量身定制的新模型可以很容易地创建,从而产生更准确的折射率分布估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modelling the Refractive Index Structure Parameter: A ResNet Approach
Various atmospheric effects have a negative influence on optical signals, especially in the troposphere, which must be taken into account in free space optical (FSO) communication systems. To obtain a quantitative estimate of these effects, different mathematical models are used, often based on empirical data from around the world. The main problem with existing models is the limited accuracy, due to the different meteorological conditions at different locations on earth. We propose a new approach of modelling the refractive index structure parameter using residual neural networks (ResNets). New models, tailored to the meteorological conditions at any place on earth, can be easily created, which yields in a more accurate estimation of the refractive index profile.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modelling the Refractive Index Structure Parameter: A ResNet Approach DVFS Technique on a Zynq SoC-based System for Low Power Consumption Optimization of Thick BoR Monopole Antennas Using Differential Evolution A Broadband 2.1 GHz LDMOS Power Amplifier with 700 MHz Bandwidth Implementing Band-pass Filter-Based Matching Networks Maritime Communications and Remote Voyage Monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1