分辨率最优、能量约束的无人机/地面作物检测任务规划

Merrill Edmonds, Tarik Yigit, J. Yi
{"title":"分辨率最优、能量约束的无人机/地面作物检测任务规划","authors":"Merrill Edmonds, Tarik Yigit, J. Yi","doi":"10.1109/CASE49439.2021.9551394","DOIUrl":null,"url":null,"abstract":"Precision agriculture relies on large-scale visual inspections for accurate crop monitoring and yield maximization. For many farms, the scales of production preclude manual inspections, and it is therefore desirable for larger producers to employ unmanned ground and aerial vehicles (UGV/UAV) to automate the necessary proximal and remote sensing tasks, respectively. This paper presents a new problem formulation for cooperative crop inspection missions under fuel and pathing constraints. We propose an a priori optimization method that leverages knowledge of the energy constraints and plot topology to determine resolution-optimal walks on a graph representing the union of reachable sets for each robot. We show that approximating the reachable sets guarantees energy efficiency. We further show that UGV-UAV interactions such as sethopping can increase the effective continuous monitoring range. Simulation studies show that our method accounts for charge-recharge cycles that are typical of long inspection missions, while also optimizing capture time and sensing resolution.","PeriodicalId":232083,"journal":{"name":"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Resolution-Optimal, Energy-Constrained Mission Planning for Unmanned Aerial/Ground Crop Inspections\",\"authors\":\"Merrill Edmonds, Tarik Yigit, J. Yi\",\"doi\":\"10.1109/CASE49439.2021.9551394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Precision agriculture relies on large-scale visual inspections for accurate crop monitoring and yield maximization. For many farms, the scales of production preclude manual inspections, and it is therefore desirable for larger producers to employ unmanned ground and aerial vehicles (UGV/UAV) to automate the necessary proximal and remote sensing tasks, respectively. This paper presents a new problem formulation for cooperative crop inspection missions under fuel and pathing constraints. We propose an a priori optimization method that leverages knowledge of the energy constraints and plot topology to determine resolution-optimal walks on a graph representing the union of reachable sets for each robot. We show that approximating the reachable sets guarantees energy efficiency. We further show that UGV-UAV interactions such as sethopping can increase the effective continuous monitoring range. Simulation studies show that our method accounts for charge-recharge cycles that are typical of long inspection missions, while also optimizing capture time and sensing resolution.\",\"PeriodicalId\":232083,\"journal\":{\"name\":\"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CASE49439.2021.9551394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASE49439.2021.9551394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

精准农业依靠大规模的目视检查来实现精确的作物监测和产量最大化。对于许多农场来说,生产规模排除了人工检查,因此,大型生产商希望使用无人驾驶的地面和空中飞行器(UGV/UAV)来分别自动化必要的近距离和遥感任务。本文提出了一种新的燃料和路径约束下的合作作物巡检任务问题公式。我们提出了一种先验优化方法,该方法利用能量约束和图拓扑的知识,在表示每个机器人可达集的并集的图上确定分辨率最优的行走。我们证明了逼近可达集可以保证能源效率。我们进一步证明了UGV-UAV的相互作用,如设置,可以增加有效的连续监测范围。仿真研究表明,我们的方法考虑了长时间检查任务中典型的充电-充电周期,同时也优化了捕获时间和传感分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Resolution-Optimal, Energy-Constrained Mission Planning for Unmanned Aerial/Ground Crop Inspections
Precision agriculture relies on large-scale visual inspections for accurate crop monitoring and yield maximization. For many farms, the scales of production preclude manual inspections, and it is therefore desirable for larger producers to employ unmanned ground and aerial vehicles (UGV/UAV) to automate the necessary proximal and remote sensing tasks, respectively. This paper presents a new problem formulation for cooperative crop inspection missions under fuel and pathing constraints. We propose an a priori optimization method that leverages knowledge of the energy constraints and plot topology to determine resolution-optimal walks on a graph representing the union of reachable sets for each robot. We show that approximating the reachable sets guarantees energy efficiency. We further show that UGV-UAV interactions such as sethopping can increase the effective continuous monitoring range. Simulation studies show that our method accounts for charge-recharge cycles that are typical of long inspection missions, while also optimizing capture time and sensing resolution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Planar Pushing of Unknown Objects Using a Large-Scale Simulation Dataset and Few-Shot Learning A configurator for supervisory controllers of roadside systems Maintaining Connectivity in Multi-Rover Networks for Lunar Exploration Missions VLC-SE: Visual-Lengthwise Configuration Self-Estimator of Continuum Robots Multi-zone indoor temperature prediction based on Graph Attention Network and Gated Recurrent Unit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1