基于随机存储器的加权脉冲神经网络模拟神经元设计

Chaeun Lee, Jaehyun Kim, Kiyoung Choi
{"title":"基于随机存储器的加权脉冲神经网络模拟神经元设计","authors":"Chaeun Lee, Jaehyun Kim, Kiyoung Choi","doi":"10.1109/ISOCC47750.2019.9078507","DOIUrl":null,"url":null,"abstract":"Spiking neural networks (SNNs) are promising because they have the ability to represent signal strength information with a simple sequence of spikes having the same height. In this paper, we propose an RRAM-based analog neuron circuit for the weighted spiking neural network which is energy-efficient and hardware-friendly. We have designed the neuron circuit to show that the weighted spiking neural network can be implemented in analog and works properly.","PeriodicalId":113802,"journal":{"name":"2019 International SoC Design Conference (ISOCC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An RRAM-based Analog Neuron Design for the Weighted Spiking Neural network\",\"authors\":\"Chaeun Lee, Jaehyun Kim, Kiyoung Choi\",\"doi\":\"10.1109/ISOCC47750.2019.9078507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spiking neural networks (SNNs) are promising because they have the ability to represent signal strength information with a simple sequence of spikes having the same height. In this paper, we propose an RRAM-based analog neuron circuit for the weighted spiking neural network which is energy-efficient and hardware-friendly. We have designed the neuron circuit to show that the weighted spiking neural network can be implemented in analog and works properly.\",\"PeriodicalId\":113802,\"journal\":{\"name\":\"2019 International SoC Design Conference (ISOCC)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International SoC Design Conference (ISOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISOCC47750.2019.9078507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International SoC Design Conference (ISOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOCC47750.2019.9078507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尖峰神经网络(snn)很有前途,因为它们能够用具有相同高度的简单尖峰序列来表示信号强度信息。在本文中,我们提出了一种基于随机存储器的模拟神经元电路用于加权尖峰神经网络,该电路节能且硬件友好。我们设计的神经元电路表明,加权尖峰神经网络可以在模拟中实现,并且工作正常。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An RRAM-based Analog Neuron Design for the Weighted Spiking Neural network
Spiking neural networks (SNNs) are promising because they have the ability to represent signal strength information with a simple sequence of spikes having the same height. In this paper, we propose an RRAM-based analog neuron circuit for the weighted spiking neural network which is energy-efficient and hardware-friendly. We have designed the neuron circuit to show that the weighted spiking neural network can be implemented in analog and works properly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-carrier Signal Detection using Convolutional Neural Networks An RRAM-based Analog Neuron Design for the Weighted Spiking Neural network NTX: A 260 Gflop/sW Streaming Accelerator for Oblivious Floating-Point Algorithms in 22 nm FD-SOI A Low-Power 20 Gbps Multi-phase MDLL-based Digital CDR with Receiver Equalization Scaling Bit-Flexible Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1