Carlos Errando-Herranz, F. Niklaus, G. Stemme, K. Gylfason
{"title":"用于可重构光网络的低功耗MEMS可调谐光子环谐振器","authors":"Carlos Errando-Herranz, F. Niklaus, G. Stemme, K. Gylfason","doi":"10.1109/MEMSYS.2015.7050884","DOIUrl":null,"url":null,"abstract":"We experimentally demonstrate a low-power MEMS tunable photonic ring resonator with 10 selectable channels for wavelength selection in reconfigurable optical networks operating in the C band. The tuning is achieved by changing the geometry of the slot of a silicon slot-waveguide ring resonator, by means of vertical electrostatic parallel-plate actuation. Our device provides static power dissipation below 0.1 μW, a wavelength tuning range of 1 nm, and a narrow bandwidth of 0.1 nm, i.e. 10 nW static power dissipation per selectable channel for TE mode tuning.","PeriodicalId":337894,"journal":{"name":"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"A low-power MEMS tunable photonic ring resonator for reconfigurable optical networks\",\"authors\":\"Carlos Errando-Herranz, F. Niklaus, G. Stemme, K. Gylfason\",\"doi\":\"10.1109/MEMSYS.2015.7050884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We experimentally demonstrate a low-power MEMS tunable photonic ring resonator with 10 selectable channels for wavelength selection in reconfigurable optical networks operating in the C band. The tuning is achieved by changing the geometry of the slot of a silicon slot-waveguide ring resonator, by means of vertical electrostatic parallel-plate actuation. Our device provides static power dissipation below 0.1 μW, a wavelength tuning range of 1 nm, and a narrow bandwidth of 0.1 nm, i.e. 10 nW static power dissipation per selectable channel for TE mode tuning.\",\"PeriodicalId\":337894,\"journal\":{\"name\":\"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2015.7050884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2015.7050884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A low-power MEMS tunable photonic ring resonator for reconfigurable optical networks
We experimentally demonstrate a low-power MEMS tunable photonic ring resonator with 10 selectable channels for wavelength selection in reconfigurable optical networks operating in the C band. The tuning is achieved by changing the geometry of the slot of a silicon slot-waveguide ring resonator, by means of vertical electrostatic parallel-plate actuation. Our device provides static power dissipation below 0.1 μW, a wavelength tuning range of 1 nm, and a narrow bandwidth of 0.1 nm, i.e. 10 nW static power dissipation per selectable channel for TE mode tuning.