SiC MOS界面的物理特性及沟槽mosfet的发展

T. Kimoto, H. Yoshioka, Takashi Nakamura
{"title":"SiC MOS界面的物理特性及沟槽mosfet的发展","authors":"T. Kimoto, H. Yoshioka, Takashi Nakamura","doi":"10.1109/WIPDA.2013.6695580","DOIUrl":null,"url":null,"abstract":"An original method to accurately evaluate the MOS interface state density has been proposed. Characterization using this method has revealed that a high density of fast states is generated by interface nitridation of SiC(0001), though the density of slow interface states can be remarkably reduced by the nitridation. The generation of fast states is less pronounced on non-basal planes of SiC, and high channel mobilities over 100 cm2/Vs are obtained for MOSFETs fabricated on Al+-implanted SiC(11-20) and (1-100). We also proposed a novel design of “double-trench” MOSFET, which is effective to alleviate the electric field crowding at the gate oxide near the trench bottom. Based on these fundamental investigations combined with advanced device technology, we achieved a very low on-resistance of 0.79 mΩcm2 for a 630 V SiC trench MOSFET (normally off).","PeriodicalId":313351,"journal":{"name":"The 1st IEEE Workshop on Wide Bandgap Power Devices and Applications","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Physics of SiC MOS interface and development of trench MOSFETs\",\"authors\":\"T. Kimoto, H. Yoshioka, Takashi Nakamura\",\"doi\":\"10.1109/WIPDA.2013.6695580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An original method to accurately evaluate the MOS interface state density has been proposed. Characterization using this method has revealed that a high density of fast states is generated by interface nitridation of SiC(0001), though the density of slow interface states can be remarkably reduced by the nitridation. The generation of fast states is less pronounced on non-basal planes of SiC, and high channel mobilities over 100 cm2/Vs are obtained for MOSFETs fabricated on Al+-implanted SiC(11-20) and (1-100). We also proposed a novel design of “double-trench” MOSFET, which is effective to alleviate the electric field crowding at the gate oxide near the trench bottom. Based on these fundamental investigations combined with advanced device technology, we achieved a very low on-resistance of 0.79 mΩcm2 for a 630 V SiC trench MOSFET (normally off).\",\"PeriodicalId\":313351,\"journal\":{\"name\":\"The 1st IEEE Workshop on Wide Bandgap Power Devices and Applications\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 1st IEEE Workshop on Wide Bandgap Power Devices and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIPDA.2013.6695580\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 1st IEEE Workshop on Wide Bandgap Power Devices and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIPDA.2013.6695580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

提出了一种准确评价MOS界面态密度的新方法。利用该方法进行表征表明,SiC(0001)界面氮化可以产生高密度的快态,但氮化可以显著降低慢态的密度。在SiC的非基面上,快速态的产生不太明显,在Al+注入的SiC(11-20)和(1-100)上制造的mosfet获得了超过100 cm2/Vs的高通道迁移率。我们还提出了一种新的“双沟槽”MOSFET设计,该设计有效地缓解了沟槽底部氧化栅处的电场拥挤。基于这些基础研究,结合先进的器件技术,我们实现了630 V SiC沟槽MOSFET(正常关闭)的极低导通电阻0.79 mΩcm2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Physics of SiC MOS interface and development of trench MOSFETs
An original method to accurately evaluate the MOS interface state density has been proposed. Characterization using this method has revealed that a high density of fast states is generated by interface nitridation of SiC(0001), though the density of slow interface states can be remarkably reduced by the nitridation. The generation of fast states is less pronounced on non-basal planes of SiC, and high channel mobilities over 100 cm2/Vs are obtained for MOSFETs fabricated on Al+-implanted SiC(11-20) and (1-100). We also proposed a novel design of “double-trench” MOSFET, which is effective to alleviate the electric field crowding at the gate oxide near the trench bottom. Based on these fundamental investigations combined with advanced device technology, we achieved a very low on-resistance of 0.79 mΩcm2 for a 630 V SiC trench MOSFET (normally off).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characterization and performance comparison of reverse blocking SiC and Si based switch Physics of SiC MOS interface and development of trench MOSFETs Degradation of dynamic ON-resistance of AlGaN/GaN HEMTs under proton irradiation High step down ratio (400 V to 1 V) phase shift full bridge DC/DC converter for data center power supplies with GaN FETs Design and testing of a 1 kW silicon-carbide (SiC) power module
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1