海洋色彩图像的神经变分反演

C. Jamet, S. Thiria, C. Moulin, M. Crépon
{"title":"海洋色彩图像的神经变分反演","authors":"C. Jamet, S. Thiria, C. Moulin, M. Crépon","doi":"10.1109/NNSP.2003.1318009","DOIUrl":null,"url":null,"abstract":"This paper presents a neuro-variational method to invert satellite ocean color signal. The method is based on a combination of neural networks and classical variational inversion. The radiative transfer equations are modeled by neural networks whose input are the oceanic and atmospheric parameters and output the top of the atmosphere reflectance at several wavelengths. The procedure consists in minimizing a quadratic cost function which is the distance between the satellite observed reflectance and the neural network computed reflectance, the control parameters being the oceanic and atmospheric parameters. The method allows us to retrieve atmospheric and oceanic parameters. We present a feasibility experiment. We show we can retrieve Chl-a with an error of 19.7% if we can obtain a perfect knowledge of three atmospheric parameters. Finally, an inversion of one SeaWiFS image is presented. The Chl-a give coherent spatial structures.","PeriodicalId":315958,"journal":{"name":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuro-variational inversion of ocean color imagery\",\"authors\":\"C. Jamet, S. Thiria, C. Moulin, M. Crépon\",\"doi\":\"10.1109/NNSP.2003.1318009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a neuro-variational method to invert satellite ocean color signal. The method is based on a combination of neural networks and classical variational inversion. The radiative transfer equations are modeled by neural networks whose input are the oceanic and atmospheric parameters and output the top of the atmosphere reflectance at several wavelengths. The procedure consists in minimizing a quadratic cost function which is the distance between the satellite observed reflectance and the neural network computed reflectance, the control parameters being the oceanic and atmospheric parameters. The method allows us to retrieve atmospheric and oceanic parameters. We present a feasibility experiment. We show we can retrieve Chl-a with an error of 19.7% if we can obtain a perfect knowledge of three atmospheric parameters. Finally, an inversion of one SeaWiFS image is presented. The Chl-a give coherent spatial structures.\",\"PeriodicalId\":315958,\"journal\":{\"name\":\"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.2003.1318009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2003.1318009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于神经变分的卫星海洋颜色信号反演方法。该方法将神经网络与经典变分反演相结合。用神经网络模拟辐射传输方程,神经网络输入海洋和大气参数,输出几个波长的大气顶部反射率。该过程包括最小化一个二次代价函数,即卫星观测反射率与神经网络计算反射率之间的距离,控制参数为海洋和大气参数。这种方法使我们能够检索大气和海洋参数。我们提出了一个可行性实验。结果表明,如果能获得三个大气参数的完整信息,则可以获得误差为19.7%的Chl-a。最后,给出了一幅SeaWiFS图像的反演结果。Chl-a给出了连贯的空间结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neuro-variational inversion of ocean color imagery
This paper presents a neuro-variational method to invert satellite ocean color signal. The method is based on a combination of neural networks and classical variational inversion. The radiative transfer equations are modeled by neural networks whose input are the oceanic and atmospheric parameters and output the top of the atmosphere reflectance at several wavelengths. The procedure consists in minimizing a quadratic cost function which is the distance between the satellite observed reflectance and the neural network computed reflectance, the control parameters being the oceanic and atmospheric parameters. The method allows us to retrieve atmospheric and oceanic parameters. We present a feasibility experiment. We show we can retrieve Chl-a with an error of 19.7% if we can obtain a perfect knowledge of three atmospheric parameters. Finally, an inversion of one SeaWiFS image is presented. The Chl-a give coherent spatial structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computational decomposition of molecular signatures based on blind source separation of non-negative dependent sources with NMF A neural network method to improve prediction of protein-protein interaction sites in heterocomplexes Neuro-variational inversion of ocean color imagery Correlation-based feature detection using pulsed neural networks Computed simultaneous imaging of multiple biomarkers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1