{"title":"大型互连可靠性分析的多物理场仿真","authors":"Tianjian Lu, Jianming Jin","doi":"10.1109/EDAPS.2016.7893167","DOIUrl":null,"url":null,"abstract":"A coupled electrical-thermal-mechanical simulation technique is developed for the reliability analysis of interconnects. The multi-physics simulation is based on the finite element method and characterizes electrical, thermal, and mechanical, aspects of interconnects simultaneously. The multi-physics simulation is capable of analyzing large-scale problems with a significantly enhanced computational efficiency. The efficiency enhancement is achieved by using a domain decomposition scheme called the finite element tearing and interconnecting, parallel computing, and the localized nature of thermal stresses. A numerical example is provided to demonstrate both the capability and efficiency of the proposed simulation.","PeriodicalId":191549,"journal":{"name":"2016 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)","volume":"275 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Multiphysics simulation for the reliability analysis of large-scale interconnects\",\"authors\":\"Tianjian Lu, Jianming Jin\",\"doi\":\"10.1109/EDAPS.2016.7893167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A coupled electrical-thermal-mechanical simulation technique is developed for the reliability analysis of interconnects. The multi-physics simulation is based on the finite element method and characterizes electrical, thermal, and mechanical, aspects of interconnects simultaneously. The multi-physics simulation is capable of analyzing large-scale problems with a significantly enhanced computational efficiency. The efficiency enhancement is achieved by using a domain decomposition scheme called the finite element tearing and interconnecting, parallel computing, and the localized nature of thermal stresses. A numerical example is provided to demonstrate both the capability and efficiency of the proposed simulation.\",\"PeriodicalId\":191549,\"journal\":{\"name\":\"2016 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)\",\"volume\":\"275 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDAPS.2016.7893167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDAPS.2016.7893167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multiphysics simulation for the reliability analysis of large-scale interconnects
A coupled electrical-thermal-mechanical simulation technique is developed for the reliability analysis of interconnects. The multi-physics simulation is based on the finite element method and characterizes electrical, thermal, and mechanical, aspects of interconnects simultaneously. The multi-physics simulation is capable of analyzing large-scale problems with a significantly enhanced computational efficiency. The efficiency enhancement is achieved by using a domain decomposition scheme called the finite element tearing and interconnecting, parallel computing, and the localized nature of thermal stresses. A numerical example is provided to demonstrate both the capability and efficiency of the proposed simulation.