无替换采样选择最优网格学习的多目标粒子群算法

Xiaoli Shu, Yan-min Liu, Nana Li, Shihua Wang, Qian Zhang, Meilan Yang
{"title":"无替换采样选择最优网格学习的多目标粒子群算法","authors":"Xiaoli Shu, Yan-min Liu, Nana Li, Shihua Wang, Qian Zhang, Meilan Yang","doi":"10.1109/ICESIT53460.2021.9697040","DOIUrl":null,"url":null,"abstract":"A novel multi-objective particle swarm optimization is proposed in this paper, which can select the optimal grid learning without replacement sampling (WRSMOPSO). The algorithm first adaptively groups the population according to the optimal number of grids, then selects the optimal grid for each group without replacement sampling, and finally selects the optimal solution randomly from the selected optimal grids for learning. In order to ensure the diversity and convergence of the algorithm, this paper also established a new external archive control strategy based on grid technology. The WRSMOPSO and the classic MOPSO are simulated experiments on the benchmark function. Experimental results show that the WRSMOPSO can effectively improve the inverted generational distance (IGD) and hypervolume indicator (HV), which compares with classic MOPSO, the WRSMOPSO shows good overall performance.","PeriodicalId":164745,"journal":{"name":"2021 IEEE International Conference on Emergency Science and Information Technology (ICESIT)","volume":"2013 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-objective particle swarm optimization for selecting optimal grid learning without replacement sampling\",\"authors\":\"Xiaoli Shu, Yan-min Liu, Nana Li, Shihua Wang, Qian Zhang, Meilan Yang\",\"doi\":\"10.1109/ICESIT53460.2021.9697040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel multi-objective particle swarm optimization is proposed in this paper, which can select the optimal grid learning without replacement sampling (WRSMOPSO). The algorithm first adaptively groups the population according to the optimal number of grids, then selects the optimal grid for each group without replacement sampling, and finally selects the optimal solution randomly from the selected optimal grids for learning. In order to ensure the diversity and convergence of the algorithm, this paper also established a new external archive control strategy based on grid technology. The WRSMOPSO and the classic MOPSO are simulated experiments on the benchmark function. Experimental results show that the WRSMOPSO can effectively improve the inverted generational distance (IGD) and hypervolume indicator (HV), which compares with classic MOPSO, the WRSMOPSO shows good overall performance.\",\"PeriodicalId\":164745,\"journal\":{\"name\":\"2021 IEEE International Conference on Emergency Science and Information Technology (ICESIT)\",\"volume\":\"2013 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Emergency Science and Information Technology (ICESIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICESIT53460.2021.9697040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Emergency Science and Information Technology (ICESIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICESIT53460.2021.9697040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种新的多目标粒子群优化算法,该算法可以选择最优的无替换采样网格学习(WRSMOPSO)。该算法首先根据最优网格数对总体进行自适应分组,然后为每组选择最优网格,不进行替换采样,最后从选择的最优网格中随机选择最优解进行学习。为了保证算法的多样性和收敛性,本文还建立了一种新的基于网格技术的外部档案控制策略。在基准函数上对WRSMOPSO和经典MOPSO进行了模拟实验。实验结果表明,WRSMOPSO可以有效地提高倒代距离(IGD)和超体积指标(HV),与经典MOPSO相比,WRSMOPSO具有良好的综合性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-objective particle swarm optimization for selecting optimal grid learning without replacement sampling
A novel multi-objective particle swarm optimization is proposed in this paper, which can select the optimal grid learning without replacement sampling (WRSMOPSO). The algorithm first adaptively groups the population according to the optimal number of grids, then selects the optimal grid for each group without replacement sampling, and finally selects the optimal solution randomly from the selected optimal grids for learning. In order to ensure the diversity and convergence of the algorithm, this paper also established a new external archive control strategy based on grid technology. The WRSMOPSO and the classic MOPSO are simulated experiments on the benchmark function. Experimental results show that the WRSMOPSO can effectively improve the inverted generational distance (IGD) and hypervolume indicator (HV), which compares with classic MOPSO, the WRSMOPSO shows good overall performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deformation monitoring of highway goaf based on three-dimensional laser scanning Mathematical Comprehensive Evaluation Model of Support Capability of a Missile Equipment Supported by Hierarchy-Fuzzy-Grey Correlation Computer Recognition of Species Using Intelligent UAV Multispectral Imagery Research on System Modeling Simulation and Application Technology Based on Electromechanical Equipment Price Prediction of Used Cars Using Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1