一种确定性统计多缺陷诊断方法

Soumya Mittal, R. D. Blanton
{"title":"一种确定性统计多缺陷诊断方法","authors":"Soumya Mittal, R. D. Blanton","doi":"10.1109/VTS48691.2020.9107603","DOIUrl":null,"url":null,"abstract":"Software diagnosis is the process of locating and characterizing a defect in a failing chip. It is the cornerstone of failure analysis that consequently enables yield learning and monitoring. However, multiple-defect diagnosis is challenging due to error masking and unmasking effects, and exponential complexity of the solution search process. This paper describes a three-phase, physically-aware diagnosis methodology called MDLearnX to effectively diagnose multiple defects, and in turn, aid in accelerating the design and process development. The first phase identifies a defect that resembles traditional fault models. The second and the third phases utilize the X-fault model and machine learning to identify correct candidates. Results from a thorough fault injection and simulation experiment demonstrate that MD-LearnX returns an ideal diagnosis 2X more often than commercial diagnosis. Its effectiveness is further evidenced through a silicon experiment, where, on average, MD-LearnX returns 5.3 fewer candidates per diagnosis as compared to state-of-the-art commercial diagnosis without losing accuracy.","PeriodicalId":326132,"journal":{"name":"2020 IEEE 38th VLSI Test Symposium (VTS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Deterministic-Statistical Multiple-Defect Diagnosis Methodology\",\"authors\":\"Soumya Mittal, R. D. Blanton\",\"doi\":\"10.1109/VTS48691.2020.9107603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software diagnosis is the process of locating and characterizing a defect in a failing chip. It is the cornerstone of failure analysis that consequently enables yield learning and monitoring. However, multiple-defect diagnosis is challenging due to error masking and unmasking effects, and exponential complexity of the solution search process. This paper describes a three-phase, physically-aware diagnosis methodology called MDLearnX to effectively diagnose multiple defects, and in turn, aid in accelerating the design and process development. The first phase identifies a defect that resembles traditional fault models. The second and the third phases utilize the X-fault model and machine learning to identify correct candidates. Results from a thorough fault injection and simulation experiment demonstrate that MD-LearnX returns an ideal diagnosis 2X more often than commercial diagnosis. Its effectiveness is further evidenced through a silicon experiment, where, on average, MD-LearnX returns 5.3 fewer candidates per diagnosis as compared to state-of-the-art commercial diagnosis without losing accuracy.\",\"PeriodicalId\":326132,\"journal\":{\"name\":\"2020 IEEE 38th VLSI Test Symposium (VTS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 38th VLSI Test Symposium (VTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VTS48691.2020.9107603\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 38th VLSI Test Symposium (VTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTS48691.2020.9107603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

软件诊断是对故障芯片中的缺陷进行定位和表征的过程。它是故障分析的基础,从而实现产量的学习和监控。然而,由于误差掩蔽和解掩蔽效应以及解搜索过程的指数复杂度,多缺陷诊断具有挑战性。本文描述了一种称为MDLearnX的三阶段物理感知诊断方法,以有效地诊断多种缺陷,并反过来帮助加速设计和过程开发。第一阶段识别类似于传统故障模型的缺陷。第二和第三阶段利用X-fault模型和机器学习来识别正确的候选者。彻底的故障注入和仿真实验结果表明,MD-LearnX的理想诊断率比商业诊断高2倍。通过硅实验,MD-LearnX的有效性得到了进一步的证明,与最先进的商业诊断相比,MD-LearnX在不失去准确性的情况下,每次诊断的候选结果平均减少了5.3个。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Deterministic-Statistical Multiple-Defect Diagnosis Methodology
Software diagnosis is the process of locating and characterizing a defect in a failing chip. It is the cornerstone of failure analysis that consequently enables yield learning and monitoring. However, multiple-defect diagnosis is challenging due to error masking and unmasking effects, and exponential complexity of the solution search process. This paper describes a three-phase, physically-aware diagnosis methodology called MDLearnX to effectively diagnose multiple defects, and in turn, aid in accelerating the design and process development. The first phase identifies a defect that resembles traditional fault models. The second and the third phases utilize the X-fault model and machine learning to identify correct candidates. Results from a thorough fault injection and simulation experiment demonstrate that MD-LearnX returns an ideal diagnosis 2X more often than commercial diagnosis. Its effectiveness is further evidenced through a silicon experiment, where, on average, MD-LearnX returns 5.3 fewer candidates per diagnosis as compared to state-of-the-art commercial diagnosis without losing accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SNIFU: Secure Network Interception for Firmware Updates in legacy PLCs A Deterministic-Statistical Multiple-Defect Diagnosis Methodology Innovative Practice on Wafer Test Innovations Ultra-Wideband Modulation Signal Measurement Using Local Sweep Digitizing Method ATTEST: Application-Agnostic Testing of a Novel Transistor-Level Programmable Fabric
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1