基于神经动态规划的最优蚀刻时间控制设计

Lei Yang, J. Si
{"title":"基于神经动态规划的最优蚀刻时间控制设计","authors":"Lei Yang, J. Si","doi":"10.1109/ISSM.2001.962918","DOIUrl":null,"url":null,"abstract":"This paper focuses on using a new learning algorithm, namely neural dynamic programming (NDP), to design the optimal etch time control system for a reactive ion etch process. First a predictive neural network model is built. This model represents the relation between some state variables and the resulting thickness remain. The NDP is employed to determine the optimal etch time based on the predictive film thickness remain model. Simulation results show that NDP is a viable learning optimization tool. The controlled film thickness remains have smaller variances in a few tested lots of wafers than those measured from 89 wafers during production.","PeriodicalId":356225,"journal":{"name":"2001 IEEE International Symposium on Semiconductor Manufacturing. ISSM 2001. Conference Proceedings (Cat. No.01CH37203)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal etch time control design using neuro-dynamic programming\",\"authors\":\"Lei Yang, J. Si\",\"doi\":\"10.1109/ISSM.2001.962918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on using a new learning algorithm, namely neural dynamic programming (NDP), to design the optimal etch time control system for a reactive ion etch process. First a predictive neural network model is built. This model represents the relation between some state variables and the resulting thickness remain. The NDP is employed to determine the optimal etch time based on the predictive film thickness remain model. Simulation results show that NDP is a viable learning optimization tool. The controlled film thickness remains have smaller variances in a few tested lots of wafers than those measured from 89 wafers during production.\",\"PeriodicalId\":356225,\"journal\":{\"name\":\"2001 IEEE International Symposium on Semiconductor Manufacturing. ISSM 2001. Conference Proceedings (Cat. No.01CH37203)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2001 IEEE International Symposium on Semiconductor Manufacturing. ISSM 2001. Conference Proceedings (Cat. No.01CH37203)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSM.2001.962918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2001 IEEE International Symposium on Semiconductor Manufacturing. ISSM 2001. Conference Proceedings (Cat. No.01CH37203)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSM.2001.962918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一种新的学习算法,即神经动态规划(NDP),来设计反应离子蚀刻工艺的最佳蚀刻时间控制系统。首先建立预测神经网络模型。该模型表示了一些状态变量与最终剩余厚度之间的关系。在预测膜厚剩余模型的基础上,采用NDP来确定最佳刻蚀时间。仿真结果表明,NDP是一种可行的学习优化工具。在少量测试的硅片中,控制薄膜厚度的差异比在生产过程中测量的89片硅片的差异要小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal etch time control design using neuro-dynamic programming
This paper focuses on using a new learning algorithm, namely neural dynamic programming (NDP), to design the optimal etch time control system for a reactive ion etch process. First a predictive neural network model is built. This model represents the relation between some state variables and the resulting thickness remain. The NDP is employed to determine the optimal etch time based on the predictive film thickness remain model. Simulation results show that NDP is a viable learning optimization tool. The controlled film thickness remains have smaller variances in a few tested lots of wafers than those measured from 89 wafers during production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The practical use of residual gas analysis in a semiconductor thermal processing module Dynamical control method of AMHS for multi-production lines Multi-wafer rapid isothermal processing Remote equipment diagnosis for metal etching process Resource conservation of buffered HF in semiconductor manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1