{"title":"用拉伸多晶硅薄膜扭转棒稳定低压驱动微镜的温度特性","authors":"M. Sasaki, M. Fujishima, K. Hane, H. Miura","doi":"10.1109/OMEMS.2008.4607858","DOIUrl":null,"url":null,"abstract":"The micromirror with the tense thin film torsion bar can realize the low-voltage driving. The temperature characteristic is improved using polycrystalline (poly-) Si thin film taking advantage of the following features. The large tensile stress is obtained by the crystallization of amorphous (a-) Si film. The doping realizes the electrical connection. The poly-Si has the almost same coefficient of thermal expansion (CTE) with that of Si substrate.","PeriodicalId":402931,"journal":{"name":"2008 IEEE/LEOS International Conference on Optical MEMs and Nanophotonics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stabilization of temperature characteristics of micromirror for low-voltage driving using thin film torsion bar of tensile poly-Si\",\"authors\":\"M. Sasaki, M. Fujishima, K. Hane, H. Miura\",\"doi\":\"10.1109/OMEMS.2008.4607858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The micromirror with the tense thin film torsion bar can realize the low-voltage driving. The temperature characteristic is improved using polycrystalline (poly-) Si thin film taking advantage of the following features. The large tensile stress is obtained by the crystallization of amorphous (a-) Si film. The doping realizes the electrical connection. The poly-Si has the almost same coefficient of thermal expansion (CTE) with that of Si substrate.\",\"PeriodicalId\":402931,\"journal\":{\"name\":\"2008 IEEE/LEOS International Conference on Optical MEMs and Nanophotonics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE/LEOS International Conference on Optical MEMs and Nanophotonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OMEMS.2008.4607858\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE/LEOS International Conference on Optical MEMs and Nanophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OMEMS.2008.4607858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stabilization of temperature characteristics of micromirror for low-voltage driving using thin film torsion bar of tensile poly-Si
The micromirror with the tense thin film torsion bar can realize the low-voltage driving. The temperature characteristic is improved using polycrystalline (poly-) Si thin film taking advantage of the following features. The large tensile stress is obtained by the crystallization of amorphous (a-) Si film. The doping realizes the electrical connection. The poly-Si has the almost same coefficient of thermal expansion (CTE) with that of Si substrate.