APF-RL:未知环境下的安全无地图导航

Kemal Bektas, H. I. Bozma
{"title":"APF-RL:未知环境下的安全无地图导航","authors":"Kemal Bektas, H. I. Bozma","doi":"10.1109/icra46639.2022.9811537","DOIUrl":null,"url":null,"abstract":"This paper is focused on safe mapless navigation of mobile robots in unknown and possibly complex environments containing both internal and dynamic obstacles. We present a novel modular approach that combines the strengths of artificial potential functions (APF) with deep reinforcement learning. Differing from related work, the robot learns how to adjust the two input parameters of the APF controller as necessary through soft actor-critic algorithm. Environmental complexity measures are introduced in order to ensure that the robot's training covers a range of learning scenarios that vary in regard to maneuvering difficulty. Our experimental results show that differing from the classical navigation methods and end-to-end models, the robot can navigate successfully on its own even in complex scenarios with moving entities without requiring any maps.","PeriodicalId":341244,"journal":{"name":"2022 International Conference on Robotics and Automation (ICRA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"APF-RL: Safe Mapless Navigation in Unknown Environments\",\"authors\":\"Kemal Bektas, H. I. Bozma\",\"doi\":\"10.1109/icra46639.2022.9811537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is focused on safe mapless navigation of mobile robots in unknown and possibly complex environments containing both internal and dynamic obstacles. We present a novel modular approach that combines the strengths of artificial potential functions (APF) with deep reinforcement learning. Differing from related work, the robot learns how to adjust the two input parameters of the APF controller as necessary through soft actor-critic algorithm. Environmental complexity measures are introduced in order to ensure that the robot's training covers a range of learning scenarios that vary in regard to maneuvering difficulty. Our experimental results show that differing from the classical navigation methods and end-to-end models, the robot can navigate successfully on its own even in complex scenarios with moving entities without requiring any maps.\",\"PeriodicalId\":341244,\"journal\":{\"name\":\"2022 International Conference on Robotics and Automation (ICRA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icra46639.2022.9811537\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icra46639.2022.9811537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文主要研究移动机器人在包含内部和动态障碍物的未知和可能复杂环境中的安全无地图导航问题。我们提出了一种新的模块化方法,将人工势函数(APF)的优势与深度强化学习相结合。与相关工作不同的是,机器人通过软actor-critic算法学习如何根据需要调整APF控制器的两个输入参数。为了确保机器人的训练涵盖了一系列不同机动难度的学习场景,引入了环境复杂性措施。我们的实验结果表明,与传统的导航方法和端到端模型不同,即使在有移动实体的复杂场景中,机器人也可以在不需要任何地图的情况下成功地自主导航。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
APF-RL: Safe Mapless Navigation in Unknown Environments
This paper is focused on safe mapless navigation of mobile robots in unknown and possibly complex environments containing both internal and dynamic obstacles. We present a novel modular approach that combines the strengths of artificial potential functions (APF) with deep reinforcement learning. Differing from related work, the robot learns how to adjust the two input parameters of the APF controller as necessary through soft actor-critic algorithm. Environmental complexity measures are introduced in order to ensure that the robot's training covers a range of learning scenarios that vary in regard to maneuvering difficulty. Our experimental results show that differing from the classical navigation methods and end-to-end models, the robot can navigate successfully on its own even in complex scenarios with moving entities without requiring any maps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Can your drone touch? Exploring the boundaries of consumer-grade multirotors for physical interaction Underwater Dock Detection through Convolutional Neural Networks Trained with Artificial Image Generation Immersive Virtual Walking System Using an Avatar Robot R2poweR: The Proof-of-Concept of a Backdrivable, High-Ratio Gearbox for Human-Robot Collaboration* Cityscapes TL++: Semantic Traffic Light Annotations for the Cityscapes Dataset
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1