基于Jem的下一代视频编解码器解码能量建模

Christian Herglotz, Matthias Kränzler, André Kaup
{"title":"基于Jem的下一代视频编解码器解码能量建模","authors":"Christian Herglotz, Matthias Kränzler, André Kaup","doi":"10.1109/PCS.2018.8456244","DOIUrl":null,"url":null,"abstract":"This paper shows that the processing energy of the decoder software for the next generation video codec can be accurately estimated using a feature based model. Therefore, a model from the literature is taken and extended to account for a high amount of the newly introduced coding modes. It is shown that using a selected set of 60 features, for a large set of more than 800 coded bit streams, a mean estimation error below 5% can be reached. Using the trained parameters of the model, the energy consumption of the decoder can be analyzed in detail such that, e.g., the coding modes consuming most processing energy can be identified. The model can be used inside the encoder for decoding- energy-rate-distortion optimization to generate decoding energy saving bit streams.","PeriodicalId":433667,"journal":{"name":"2018 Picture Coding Symposium (PCS)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Decoding Energy Modeling For The Next Generation Video Codec Based On Jem\",\"authors\":\"Christian Herglotz, Matthias Kränzler, André Kaup\",\"doi\":\"10.1109/PCS.2018.8456244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper shows that the processing energy of the decoder software for the next generation video codec can be accurately estimated using a feature based model. Therefore, a model from the literature is taken and extended to account for a high amount of the newly introduced coding modes. It is shown that using a selected set of 60 features, for a large set of more than 800 coded bit streams, a mean estimation error below 5% can be reached. Using the trained parameters of the model, the energy consumption of the decoder can be analyzed in detail such that, e.g., the coding modes consuming most processing energy can be identified. The model can be used inside the encoder for decoding- energy-rate-distortion optimization to generate decoding energy saving bit streams.\",\"PeriodicalId\":433667,\"journal\":{\"name\":\"2018 Picture Coding Symposium (PCS)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Picture Coding Symposium (PCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PCS.2018.8456244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Picture Coding Symposium (PCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCS.2018.8456244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文表明,采用基于特征的模型可以准确估计下一代视频编解码器的解码器软件的处理能量。因此,采用文献中的模型并进行扩展,以解释大量新引入的编码模式。结果表明,选用60个特征,对于800多个编码比特流的大数据集,平均估计误差可达5%以下。利用模型的训练参数,可以详细分析解码器的能量消耗,例如,可以识别出消耗最多处理能量的编码模式。该模型可用于编码器内部的解码能量率失真优化,以产生解码节能比特流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Decoding Energy Modeling For The Next Generation Video Codec Based On Jem
This paper shows that the processing energy of the decoder software for the next generation video codec can be accurately estimated using a feature based model. Therefore, a model from the literature is taken and extended to account for a high amount of the newly introduced coding modes. It is shown that using a selected set of 60 features, for a large set of more than 800 coded bit streams, a mean estimation error below 5% can be reached. Using the trained parameters of the model, the energy consumption of the decoder can be analyzed in detail such that, e.g., the coding modes consuming most processing energy can be identified. The model can be used inside the encoder for decoding- energy-rate-distortion optimization to generate decoding energy saving bit streams.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Future Video Coding Technologies: A Performance Evaluation of AV1, JEM, VP9, and HM Joint Optimization of Rate, Distortion, and Maximum Absolute Error for Compression of Medical Volumes Using HEVC Intra Wavelet Decomposition Pre-processing for Spatial Scalability Video Compression Scheme Detecting Source Video Artifacts with Supervised Sparse Filters Perceptually-Aligned Frame Rate Selection Using Spatio-Temporal Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1