{"title":"基于SVM分类器的遥感图像分类","authors":"H. Yan","doi":"10.1109/ICSSEM.2011.6081213","DOIUrl":null,"url":null,"abstract":"How to choose the kernel function of the SVM classifier and function's parameters affects system's generalization and operating speed directly. It takes Cross Validation and Grid Search to validate the performance of Radial Basis Kernel, Polynomial Kernel and Sigmoid Kernel functions in Multi-class Classification, which can not only deduce the capability of SVM but also prove the effectiveness of Grid Search in finding optimized characteristics. Finally, the three SVM classifier kernel functions are used to classify BSQ remote sensing images in TM6 band, and the experimental data prove their feasibility and high efficiency.","PeriodicalId":406311,"journal":{"name":"2011 International Conference on System science, Engineering design and Manufacturing informatization","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Remote sensing image classification based on SVM classifier\",\"authors\":\"H. Yan\",\"doi\":\"10.1109/ICSSEM.2011.6081213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"How to choose the kernel function of the SVM classifier and function's parameters affects system's generalization and operating speed directly. It takes Cross Validation and Grid Search to validate the performance of Radial Basis Kernel, Polynomial Kernel and Sigmoid Kernel functions in Multi-class Classification, which can not only deduce the capability of SVM but also prove the effectiveness of Grid Search in finding optimized characteristics. Finally, the three SVM classifier kernel functions are used to classify BSQ remote sensing images in TM6 band, and the experimental data prove their feasibility and high efficiency.\",\"PeriodicalId\":406311,\"journal\":{\"name\":\"2011 International Conference on System science, Engineering design and Manufacturing informatization\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on System science, Engineering design and Manufacturing informatization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSSEM.2011.6081213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on System science, Engineering design and Manufacturing informatization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSEM.2011.6081213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

如何选择支持向量机分类器的核函数和函数参数直接影响系统的泛化和运行速度。通过交叉验证和网格搜索来验证径向基核、多项式核和Sigmoid核函数在多类分类中的性能,不仅可以推断支持向量机的能力,而且可以证明网格搜索在寻找最优特征方面的有效性。最后,将三种SVM分类器核函数用于TM6波段的BSQ遥感图像分类,实验数据证明了其可行性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Remote sensing image classification based on SVM classifier
How to choose the kernel function of the SVM classifier and function's parameters affects system's generalization and operating speed directly. It takes Cross Validation and Grid Search to validate the performance of Radial Basis Kernel, Polynomial Kernel and Sigmoid Kernel functions in Multi-class Classification, which can not only deduce the capability of SVM but also prove the effectiveness of Grid Search in finding optimized characteristics. Finally, the three SVM classifier kernel functions are used to classify BSQ remote sensing images in TM6 band, and the experimental data prove their feasibility and high efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EXTRACTOR: An extensible framework for identifying Aspect-Oriented refactoring opportunities Scenario simulation of Sino-Singapore Tianjin Eco-city development based on System Dynamics Face recognition based on classifier combinations Computer aided design and manufacture of high precision cam Design of wireless sensor networks for density of natural gas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1