基于20纳米InGaAs MOSFET技术的高增益220 - 275 GHz放大器mmic

A. Tessmann, A. Leuther, F. Heinz, F. Bernhardt, H. Massler
{"title":"基于20纳米InGaAs MOSFET技术的高增益220 - 275 GHz放大器mmic","authors":"A. Tessmann, A. Leuther, F. Heinz, F. Bernhardt, H. Massler","doi":"10.1109/BCICTS.2018.8550836","DOIUrl":null,"url":null,"abstract":"Compact high gain 220 to 275 GHz millimeter wave monolithic integrated circuit (MMIC) amplifiers have been developed, based on a metamorphic 20 nm gate length InGaAs metal-oxide-semiconductor field-effect transistor (MOSFET) technology. Therefore, an Al2O3/HfO2layer stack was deposited as a gate dielectric directly on top of an $\\mathbf{In}_{0.8}\\mathbf{Ga}_{0.2}\\mathbf{As}$ channel by atomic layer deposition. The gate layout was optimized for millimeter wave and submillimeter wave integrated circuit applications using T-gates and wet chemical recess etching to minimize the parasitic gate capacitances. For a $2\\times 10\\ \\mu \\text{m}$ gate width transistor, a transit frequency $f_{\\text{T}}$ of 275 GHz and a record maximum oscillation frequency $f_{max}$ of 640 GHz was extrapolated. A realized three-stage cascode amplifier circuit demonstrated a maximum gain of 21 dB at 263 GHz and a small-signal gain of more than 18 dB between 222 and 274 GHz. The total chip size of the millimeter wave amplifier MMIC was only $0.5\\times 1.2\\ \\mathbf{mm}^{2}$.","PeriodicalId":272808,"journal":{"name":"2018 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"High Gain 220 - 275 GHz Amplifier MMICs Based on Metamorphic 20 nm InGaAs MOSFET Technology\",\"authors\":\"A. Tessmann, A. Leuther, F. Heinz, F. Bernhardt, H. Massler\",\"doi\":\"10.1109/BCICTS.2018.8550836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compact high gain 220 to 275 GHz millimeter wave monolithic integrated circuit (MMIC) amplifiers have been developed, based on a metamorphic 20 nm gate length InGaAs metal-oxide-semiconductor field-effect transistor (MOSFET) technology. Therefore, an Al2O3/HfO2layer stack was deposited as a gate dielectric directly on top of an $\\\\mathbf{In}_{0.8}\\\\mathbf{Ga}_{0.2}\\\\mathbf{As}$ channel by atomic layer deposition. The gate layout was optimized for millimeter wave and submillimeter wave integrated circuit applications using T-gates and wet chemical recess etching to minimize the parasitic gate capacitances. For a $2\\\\times 10\\\\ \\\\mu \\\\text{m}$ gate width transistor, a transit frequency $f_{\\\\text{T}}$ of 275 GHz and a record maximum oscillation frequency $f_{max}$ of 640 GHz was extrapolated. A realized three-stage cascode amplifier circuit demonstrated a maximum gain of 21 dB at 263 GHz and a small-signal gain of more than 18 dB between 222 and 274 GHz. The total chip size of the millimeter wave amplifier MMIC was only $0.5\\\\times 1.2\\\\ \\\\mathbf{mm}^{2}$.\",\"PeriodicalId\":272808,\"journal\":{\"name\":\"2018 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BCICTS.2018.8550836\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BCICTS.2018.8550836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

基于20 nm栅长InGaAs金属氧化物半导体场效应晶体管(MOSFET)技术,研制了一种紧凑的高增益220 ~ 275 GHz毫米波单片集成电路(MMIC)放大器。因此,在$\mathbf{In}_{0.8}\mathbf{Ga}_{0.2}\mathbf{as}$通道上直接沉积了Al2O3/ hfo2层作为栅极电介质。采用t型栅极和湿化学凹槽蚀刻技术,优化了毫米波和亚毫米波集成电路的栅极布局,以最小化寄生栅极电容。对于2\ \ × 10\ \ \mu \text{m}$栅极宽度晶体管,推断出传输频率$f_{\text{T}}$为275 GHz,最大振荡频率$f_{max}$为640 GHz。所实现的三级级联放大器电路在263ghz时的最大增益为21db,在222 ~ 274ghz之间的小信号增益大于18db。毫米波放大器MMIC的总芯片尺寸仅为$0.5\乘以1.2\ \mathbf{mm}^{2}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High Gain 220 - 275 GHz Amplifier MMICs Based on Metamorphic 20 nm InGaAs MOSFET Technology
Compact high gain 220 to 275 GHz millimeter wave monolithic integrated circuit (MMIC) amplifiers have been developed, based on a metamorphic 20 nm gate length InGaAs metal-oxide-semiconductor field-effect transistor (MOSFET) technology. Therefore, an Al2O3/HfO2layer stack was deposited as a gate dielectric directly on top of an $\mathbf{In}_{0.8}\mathbf{Ga}_{0.2}\mathbf{As}$ channel by atomic layer deposition. The gate layout was optimized for millimeter wave and submillimeter wave integrated circuit applications using T-gates and wet chemical recess etching to minimize the parasitic gate capacitances. For a $2\times 10\ \mu \text{m}$ gate width transistor, a transit frequency $f_{\text{T}}$ of 275 GHz and a record maximum oscillation frequency $f_{max}$ of 640 GHz was extrapolated. A realized three-stage cascode amplifier circuit demonstrated a maximum gain of 21 dB at 263 GHz and a small-signal gain of more than 18 dB between 222 and 274 GHz. The total chip size of the millimeter wave amplifier MMIC was only $0.5\times 1.2\ \mathbf{mm}^{2}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Equivalent Circuit Modelling and Parameter Extraction of GaN HEMT Gate Lag Inducing ACLR Degradation of TDD-LTE BTS PA SiGe BiCMOS Current Status and Future Trends in Europe Technology Positioning for mm Wave Applications: 130/90nm SiGe BiCMOS vs. 28nm RFCMOS Quantification of Dopant Profiles in SiGe HBT Devices Using SiGe-on-SOI HBTs to Build 300°C Capable Analog Circuits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1