Jun Ren, M. I. Shams, Zhenguo Jiang, P. Fay, Lei Liu
{"title":"光控可调谐和可重构太赫兹器件","authors":"Jun Ren, M. I. Shams, Zhenguo Jiang, P. Fay, Lei Liu","doi":"10.1109/NAECON.2017.8268795","DOIUrl":null,"url":null,"abstract":"Tunable and reconfigurable terahertz (THz) devices such as modulators/variable attenuators, tunable filters, coded apertures, phase shifters and high-level switches (e.g., DPDT) that are required for advanced imaging and adaptive wireless communication applications are challenging to realize. We report a promising approach to develop the above THz devices based on spatially-resolved optical modulation (SROM) using photo-induced (PI) free carriers in semiconductors. The fundamental mechanism for this approach will first be introduced followed by prototype demonstrations for reconfigurable coded-aperture imaging masks, beam steering/forming antennas and waveguide-based tunable attenuators. The potential to develop more advanced tunable/reconfigurable THz devices (e.g., tunable delay lines, SPDT, DPDT switches) using optically-controlled waveguide architectures such as PI electromagnetic band gap (EBG) structures and dynamically-reconfigurable PI substrate-integrated waveguides (SIWs) will also be discussed on the basis of performance-improved SROM using the so-called mesa-array technique.","PeriodicalId":306091,"journal":{"name":"2017 IEEE National Aerospace and Electronics Conference (NAECON)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optically controlled tunable and reconfigurable Terahertz devices\",\"authors\":\"Jun Ren, M. I. Shams, Zhenguo Jiang, P. Fay, Lei Liu\",\"doi\":\"10.1109/NAECON.2017.8268795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tunable and reconfigurable terahertz (THz) devices such as modulators/variable attenuators, tunable filters, coded apertures, phase shifters and high-level switches (e.g., DPDT) that are required for advanced imaging and adaptive wireless communication applications are challenging to realize. We report a promising approach to develop the above THz devices based on spatially-resolved optical modulation (SROM) using photo-induced (PI) free carriers in semiconductors. The fundamental mechanism for this approach will first be introduced followed by prototype demonstrations for reconfigurable coded-aperture imaging masks, beam steering/forming antennas and waveguide-based tunable attenuators. The potential to develop more advanced tunable/reconfigurable THz devices (e.g., tunable delay lines, SPDT, DPDT switches) using optically-controlled waveguide architectures such as PI electromagnetic band gap (EBG) structures and dynamically-reconfigurable PI substrate-integrated waveguides (SIWs) will also be discussed on the basis of performance-improved SROM using the so-called mesa-array technique.\",\"PeriodicalId\":306091,\"journal\":{\"name\":\"2017 IEEE National Aerospace and Electronics Conference (NAECON)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE National Aerospace and Electronics Conference (NAECON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAECON.2017.8268795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE National Aerospace and Electronics Conference (NAECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.2017.8268795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optically controlled tunable and reconfigurable Terahertz devices
Tunable and reconfigurable terahertz (THz) devices such as modulators/variable attenuators, tunable filters, coded apertures, phase shifters and high-level switches (e.g., DPDT) that are required for advanced imaging and adaptive wireless communication applications are challenging to realize. We report a promising approach to develop the above THz devices based on spatially-resolved optical modulation (SROM) using photo-induced (PI) free carriers in semiconductors. The fundamental mechanism for this approach will first be introduced followed by prototype demonstrations for reconfigurable coded-aperture imaging masks, beam steering/forming antennas and waveguide-based tunable attenuators. The potential to develop more advanced tunable/reconfigurable THz devices (e.g., tunable delay lines, SPDT, DPDT switches) using optically-controlled waveguide architectures such as PI electromagnetic band gap (EBG) structures and dynamically-reconfigurable PI substrate-integrated waveguides (SIWs) will also be discussed on the basis of performance-improved SROM using the so-called mesa-array technique.