J. Sirigos, V. Darsinos, N. Fakotakis, G. Kokkinakis
{"title":"使用神经网络和规则进行元音-非元音决策","authors":"J. Sirigos, V. Darsinos, N. Fakotakis, G. Kokkinakis","doi":"10.1109/ICECS.1996.582917","DOIUrl":null,"url":null,"abstract":"This paper describes a speaker independent vowel/non-vowel classifier based on neural networks and several rules. RASTA-PLP analysis of the speech signal resulting to mel-cepstral coefficients and a formant tracking method are used in order to provide the feature vectors for the MLP. To train and test the system we used a part of the TIMIT database. The results indicate that the performance of this classifier for speaker independent vowel classification is approximately 98.5% so it can be favorably used for speaker recognition or speech labeling purposes.","PeriodicalId":402369,"journal":{"name":"Proceedings of Third International Conference on Electronics, Circuits, and Systems","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Vowel-non vowel decision using neural networks and rules\",\"authors\":\"J. Sirigos, V. Darsinos, N. Fakotakis, G. Kokkinakis\",\"doi\":\"10.1109/ICECS.1996.582917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a speaker independent vowel/non-vowel classifier based on neural networks and several rules. RASTA-PLP analysis of the speech signal resulting to mel-cepstral coefficients and a formant tracking method are used in order to provide the feature vectors for the MLP. To train and test the system we used a part of the TIMIT database. The results indicate that the performance of this classifier for speaker independent vowel classification is approximately 98.5% so it can be favorably used for speaker recognition or speech labeling purposes.\",\"PeriodicalId\":402369,\"journal\":{\"name\":\"Proceedings of Third International Conference on Electronics, Circuits, and Systems\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Third International Conference on Electronics, Circuits, and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECS.1996.582917\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Third International Conference on Electronics, Circuits, and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECS.1996.582917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Vowel-non vowel decision using neural networks and rules
This paper describes a speaker independent vowel/non-vowel classifier based on neural networks and several rules. RASTA-PLP analysis of the speech signal resulting to mel-cepstral coefficients and a formant tracking method are used in order to provide the feature vectors for the MLP. To train and test the system we used a part of the TIMIT database. The results indicate that the performance of this classifier for speaker independent vowel classification is approximately 98.5% so it can be favorably used for speaker recognition or speech labeling purposes.