考虑残余曲率的管中管拖网拉过行为的有限元分析

Yi Yu, Kristian Norland
{"title":"考虑残余曲率的管中管拖网拉过行为的有限元分析","authors":"Yi Yu, Kristian Norland","doi":"10.1115/omae2020-18206","DOIUrl":null,"url":null,"abstract":"\n Subsea 7 is currently planning for the installation of PiP flowlines in the Norwegian Sea. A case study has been performed for a 8 × 12in PiP to be installed in a water depth between 320 m to 420 m. Fishing activities are frequent in this area. Therefore, the integrity of the pipeline in case of trawl pull-over must be checked. It is found that pipelines with residual curvatures could behave very differently from pipelines without residual curvatures when they are pulled over by trawl gear. However, the effect of residual curvature on pull-over resistance capacity of rigid pipelines has not been mentioned in DNVGL-RP-F111 [1]. Therefore, an optimised methodology involving FE analyses and Monte Carlo simulation has been used in this project to check the integrity of the pipe-in-pipe flowline for the trawl pull-over load case.\n This paper focuses on the FE analyses of the pipe-in-pipe flowline pulled over by trawl gear. The related Monte Carlo simulation has been discussed elsewhere [2]. To understand in detail the behaviour of the pipeline with trawl pull-over loading, the pipeline was modelled using a combination of beam, shell and brick (solid) elements. The advantage of the model was demonstrated by comparing output from the model with corresponding output using beam elements. The effects of some result-sensitive parameters were studied, which include centralizer location, pressure, trawl contact area and wall thickness. Special attention was paid to these parameters because their effects are not able to be captured with the normal beam element. Finally, the impact of residual curvatures on the trawl pull-over behaviour was studied. It was found that the pipeline pull-over resistance capacity is sensitive to residual curvature direction and contact location, but not sensitive to RC spacing and RC shape. Based on the advantage of this analysis methodology, it is believed to be a good option for pipeline trawl pull-over analysis, especially with complex pipeline configuration.","PeriodicalId":240325,"journal":{"name":"Volume 4: Pipelines, Risers, and Subsea Systems","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite Element Analysis of Trawl Pull-Over Behaviour of Pipe-in-Pipe With Residual Curvatures\",\"authors\":\"Yi Yu, Kristian Norland\",\"doi\":\"10.1115/omae2020-18206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Subsea 7 is currently planning for the installation of PiP flowlines in the Norwegian Sea. A case study has been performed for a 8 × 12in PiP to be installed in a water depth between 320 m to 420 m. Fishing activities are frequent in this area. Therefore, the integrity of the pipeline in case of trawl pull-over must be checked. It is found that pipelines with residual curvatures could behave very differently from pipelines without residual curvatures when they are pulled over by trawl gear. However, the effect of residual curvature on pull-over resistance capacity of rigid pipelines has not been mentioned in DNVGL-RP-F111 [1]. Therefore, an optimised methodology involving FE analyses and Monte Carlo simulation has been used in this project to check the integrity of the pipe-in-pipe flowline for the trawl pull-over load case.\\n This paper focuses on the FE analyses of the pipe-in-pipe flowline pulled over by trawl gear. The related Monte Carlo simulation has been discussed elsewhere [2]. To understand in detail the behaviour of the pipeline with trawl pull-over loading, the pipeline was modelled using a combination of beam, shell and brick (solid) elements. The advantage of the model was demonstrated by comparing output from the model with corresponding output using beam elements. The effects of some result-sensitive parameters were studied, which include centralizer location, pressure, trawl contact area and wall thickness. Special attention was paid to these parameters because their effects are not able to be captured with the normal beam element. Finally, the impact of residual curvatures on the trawl pull-over behaviour was studied. It was found that the pipeline pull-over resistance capacity is sensitive to residual curvature direction and contact location, but not sensitive to RC spacing and RC shape. Based on the advantage of this analysis methodology, it is believed to be a good option for pipeline trawl pull-over analysis, especially with complex pipeline configuration.\",\"PeriodicalId\":240325,\"journal\":{\"name\":\"Volume 4: Pipelines, Risers, and Subsea Systems\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 4: Pipelines, Risers, and Subsea Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/omae2020-18206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 4: Pipelines, Risers, and Subsea Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2020-18206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Subsea 7目前正计划在挪威海安装PiP管线。对安装在水深320米至420米的8 × 12英寸PiP进行了案例研究。这个地区捕鱼活动频繁。因此,在拖网拉过的情况下,必须检查管道的完整性。研究发现,有残余曲率的管道在拖网装置的牵引下与无残余曲率的管道有很大的不同。然而,DNVGL-RP-F111[1]中未提及残余曲率对刚性管道抗拉过能力的影响。因此,该项目采用了一种优化的方法,包括有限元分析和蒙特卡罗模拟,以检查拖网拉过负载情况下管中管流动管线的完整性。本文着重对拖网拖网拖过的管中管线进行了有限元分析。相关的蒙特卡罗模拟已在其他地方讨论过。为了详细了解管道在拖网拉过载荷下的行为,管道使用梁、壳和砖(实体)元素的组合进行建模。通过将模型输出与梁单元输出进行比较,证明了该模型的优越性。研究了扶正器位置、压力、拖网接触面积和壁厚等对结果敏感的参数的影响。特别注意这些参数,因为它们的影响不能用普通的光束单元捕获。最后,研究了残余曲率对拖网侧拉性能的影响。研究发现,管道拉过抗力对残余曲率方向和接触位置敏感,而对RC间距和RC形状不敏感。基于这种分析方法的优势,它被认为是管道拖网拉过分析的一个很好的选择,特别是在复杂的管道配置中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Finite Element Analysis of Trawl Pull-Over Behaviour of Pipe-in-Pipe With Residual Curvatures
Subsea 7 is currently planning for the installation of PiP flowlines in the Norwegian Sea. A case study has been performed for a 8 × 12in PiP to be installed in a water depth between 320 m to 420 m. Fishing activities are frequent in this area. Therefore, the integrity of the pipeline in case of trawl pull-over must be checked. It is found that pipelines with residual curvatures could behave very differently from pipelines without residual curvatures when they are pulled over by trawl gear. However, the effect of residual curvature on pull-over resistance capacity of rigid pipelines has not been mentioned in DNVGL-RP-F111 [1]. Therefore, an optimised methodology involving FE analyses and Monte Carlo simulation has been used in this project to check the integrity of the pipe-in-pipe flowline for the trawl pull-over load case. This paper focuses on the FE analyses of the pipe-in-pipe flowline pulled over by trawl gear. The related Monte Carlo simulation has been discussed elsewhere [2]. To understand in detail the behaviour of the pipeline with trawl pull-over loading, the pipeline was modelled using a combination of beam, shell and brick (solid) elements. The advantage of the model was demonstrated by comparing output from the model with corresponding output using beam elements. The effects of some result-sensitive parameters were studied, which include centralizer location, pressure, trawl contact area and wall thickness. Special attention was paid to these parameters because their effects are not able to be captured with the normal beam element. Finally, the impact of residual curvatures on the trawl pull-over behaviour was studied. It was found that the pipeline pull-over resistance capacity is sensitive to residual curvature direction and contact location, but not sensitive to RC spacing and RC shape. Based on the advantage of this analysis methodology, it is believed to be a good option for pipeline trawl pull-over analysis, especially with complex pipeline configuration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Integrity Monitoring of Offshore Arctic Pipelines Investigation of Near-Field Temperature Distribution in Buried Dense Phase CO2 Pipelines On the Plastic Bending Responses of Dented Lined Pipe Implementation of a Method for Free-Spanning Pipeline Analysis Simplified Stochastic Modelling of the Force on a Pipe Bend Due to Two-Phase Slug Flow
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1