{"title":"基于tsv的分层配电网络一阶下垂和谐振噪声估计分析与方法","authors":"G. Charles, P. Franzon, Jaemin Kim, Alex Levin","doi":"10.1109/EPEPS.2011.6100243","DOIUrl":null,"url":null,"abstract":"In this paper, we model and analyse a hierarchical TSV-based chip-package co-design of the power delivery network (PDN) for three-dimensional integrated circuits (3DICs). It is a significant design consideration to combine chip/package PDN structures, accurately characterize and quantify their overall impedance, 1st-droop effect and resonant noise behaviour for multi-stacked chips. To better understand how to reduce noise, particularly simultaneous switching noise (SSN) and determine voltage drop impact on power delivery networks for 3DICs, an analytical model is enhanced and applied to estimate the different noise levels of hierarchical TSV-based PDN structures. The on-chip parasitic capacitances and intentionally added decoupling capacitors help counter any Ldi/dt variations from the power supply rails as a result of the inductive effects in TSVs. With technology interest in embedded applications, the hierarchical chip-package TSV-based PDN design is modeled after a multi-stacked memory subsystem, a silicon interposer and package structure. A segmentation-based method is used to calculate the overall impedance of the hierarchical PDN system. An analytical expression is modified and used to quantify the transient response characteristics of 1st-droop and resonant noise property.","PeriodicalId":313560,"journal":{"name":"2011 IEEE 20th Conference on Electrical Performance of Electronic Packaging and Systems","volume":"228 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Analysis and approach of TSV-based hierarchical power distribution networks for estimating 1st-Droop and resonant noise in 3DIC\",\"authors\":\"G. Charles, P. Franzon, Jaemin Kim, Alex Levin\",\"doi\":\"10.1109/EPEPS.2011.6100243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we model and analyse a hierarchical TSV-based chip-package co-design of the power delivery network (PDN) for three-dimensional integrated circuits (3DICs). It is a significant design consideration to combine chip/package PDN structures, accurately characterize and quantify their overall impedance, 1st-droop effect and resonant noise behaviour for multi-stacked chips. To better understand how to reduce noise, particularly simultaneous switching noise (SSN) and determine voltage drop impact on power delivery networks for 3DICs, an analytical model is enhanced and applied to estimate the different noise levels of hierarchical TSV-based PDN structures. The on-chip parasitic capacitances and intentionally added decoupling capacitors help counter any Ldi/dt variations from the power supply rails as a result of the inductive effects in TSVs. With technology interest in embedded applications, the hierarchical chip-package TSV-based PDN design is modeled after a multi-stacked memory subsystem, a silicon interposer and package structure. A segmentation-based method is used to calculate the overall impedance of the hierarchical PDN system. An analytical expression is modified and used to quantify the transient response characteristics of 1st-droop and resonant noise property.\",\"PeriodicalId\":313560,\"journal\":{\"name\":\"2011 IEEE 20th Conference on Electrical Performance of Electronic Packaging and Systems\",\"volume\":\"228 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 20th Conference on Electrical Performance of Electronic Packaging and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPEPS.2011.6100243\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 20th Conference on Electrical Performance of Electronic Packaging and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEPS.2011.6100243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis and approach of TSV-based hierarchical power distribution networks for estimating 1st-Droop and resonant noise in 3DIC
In this paper, we model and analyse a hierarchical TSV-based chip-package co-design of the power delivery network (PDN) for three-dimensional integrated circuits (3DICs). It is a significant design consideration to combine chip/package PDN structures, accurately characterize and quantify their overall impedance, 1st-droop effect and resonant noise behaviour for multi-stacked chips. To better understand how to reduce noise, particularly simultaneous switching noise (SSN) and determine voltage drop impact on power delivery networks for 3DICs, an analytical model is enhanced and applied to estimate the different noise levels of hierarchical TSV-based PDN structures. The on-chip parasitic capacitances and intentionally added decoupling capacitors help counter any Ldi/dt variations from the power supply rails as a result of the inductive effects in TSVs. With technology interest in embedded applications, the hierarchical chip-package TSV-based PDN design is modeled after a multi-stacked memory subsystem, a silicon interposer and package structure. A segmentation-based method is used to calculate the overall impedance of the hierarchical PDN system. An analytical expression is modified and used to quantify the transient response characteristics of 1st-droop and resonant noise property.