{"title":"微处理应用的力反馈耦合","authors":"G. Venture, D. Haliyo, A. Micaelli, S. Régnier","doi":"10.1163/156856306777924635","DOIUrl":null,"url":null,"abstract":"This paper presents a coupling method in order to establish force-feedback user interaction with a micromanipulator. The presented control scheme design is based on stability considerations and, hence, allows unconditional stable operation independently on the haptic interface, micromanip- ulator and scaling ratios on force and position. Experimental comparison of proposed coupling with a common force-position coupling is also included.","PeriodicalId":150257,"journal":{"name":"Journal of Micromechatronics","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Force-feedback coupling for micro-handling applications\",\"authors\":\"G. Venture, D. Haliyo, A. Micaelli, S. Régnier\",\"doi\":\"10.1163/156856306777924635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a coupling method in order to establish force-feedback user interaction with a micromanipulator. The presented control scheme design is based on stability considerations and, hence, allows unconditional stable operation independently on the haptic interface, micromanip- ulator and scaling ratios on force and position. Experimental comparison of proposed coupling with a common force-position coupling is also included.\",\"PeriodicalId\":150257,\"journal\":{\"name\":\"Journal of Micromechatronics\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micromechatronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1163/156856306777924635\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromechatronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1163/156856306777924635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Force-feedback coupling for micro-handling applications
This paper presents a coupling method in order to establish force-feedback user interaction with a micromanipulator. The presented control scheme design is based on stability considerations and, hence, allows unconditional stable operation independently on the haptic interface, micromanip- ulator and scaling ratios on force and position. Experimental comparison of proposed coupling with a common force-position coupling is also included.