舰船全电系统脉冲负荷功率流控制评价

Jason C. Neely, L. Rashkin, Marvin A. Cook, David G. Wilson, Steven F. Glover
{"title":"舰船全电系统脉冲负荷功率流控制评价","authors":"Jason C. Neely, L. Rashkin, Marvin A. Cook, David G. Wilson, Steven F. Glover","doi":"10.1109/APEC.2016.7468377","DOIUrl":null,"url":null,"abstract":"Future U.S. Navy ships will require power systems that meet more stringent agility, efficiency, scalability, controllability and resiliency requirements. Modularity and the ability to interconnect power systems having their own energy storage, generation, and loads is an enabling capability. To aid in the design of power system controls, much of what has been learned from advances in the control of networked microgrids is being applied. Developing alternative methods for controlling and analyzing these systems will provide insight into tradeoffs that can be made during the design phase. This paper considers the problem of electric ship power disturbances in response to pulsed loads, in particular, to electromagnetic launch systems. Recent literature has indicated that there exists a trade-off in information and power flow and that intelligent, coordinated control of power flow in a microgrid system (i.e. such as an electric ship) can modify energy storage hardware requirements. The control presented herein was developed to provide the necessary flexibility with little computational burden. It is described analytically and then demonstrated in simulation and hardware.","PeriodicalId":143091,"journal":{"name":"2016 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Evaluation of power flow control for an all-electric warship power system with pulsed load applications\",\"authors\":\"Jason C. Neely, L. Rashkin, Marvin A. Cook, David G. Wilson, Steven F. Glover\",\"doi\":\"10.1109/APEC.2016.7468377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Future U.S. Navy ships will require power systems that meet more stringent agility, efficiency, scalability, controllability and resiliency requirements. Modularity and the ability to interconnect power systems having their own energy storage, generation, and loads is an enabling capability. To aid in the design of power system controls, much of what has been learned from advances in the control of networked microgrids is being applied. Developing alternative methods for controlling and analyzing these systems will provide insight into tradeoffs that can be made during the design phase. This paper considers the problem of electric ship power disturbances in response to pulsed loads, in particular, to electromagnetic launch systems. Recent literature has indicated that there exists a trade-off in information and power flow and that intelligent, coordinated control of power flow in a microgrid system (i.e. such as an electric ship) can modify energy storage hardware requirements. The control presented herein was developed to provide the necessary flexibility with little computational burden. It is described analytically and then demonstrated in simulation and hardware.\",\"PeriodicalId\":143091,\"journal\":{\"name\":\"2016 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APEC.2016.7468377\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC.2016.7468377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

未来美国海军舰艇将需要满足更严格的敏捷性、效率、可扩展性、可控性和弹性要求的动力系统。模块化和互联电力系统的能力具有自己的能量存储,发电和负载是一种使能能力。为了帮助电力系统控制的设计,许多已经从网络微电网控制的进步中学到的东西正在被应用。开发控制和分析这些系统的替代方法将提供在设计阶段可以做出权衡的见解。本文研究了舰船电力系统在脉冲载荷作用下的电力干扰问题,特别是电磁发射系统的电力干扰问题。最近的文献表明,信息和潮流之间存在权衡,微电网系统(如电动船舶)中潮流的智能、协调控制可以改变储能硬件要求。本文提出的控制是为了在计算量小的情况下提供必要的灵活性。首先对其进行了分析描述,然后进行了仿真和硬件演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of power flow control for an all-electric warship power system with pulsed load applications
Future U.S. Navy ships will require power systems that meet more stringent agility, efficiency, scalability, controllability and resiliency requirements. Modularity and the ability to interconnect power systems having their own energy storage, generation, and loads is an enabling capability. To aid in the design of power system controls, much of what has been learned from advances in the control of networked microgrids is being applied. Developing alternative methods for controlling and analyzing these systems will provide insight into tradeoffs that can be made during the design phase. This paper considers the problem of electric ship power disturbances in response to pulsed loads, in particular, to electromagnetic launch systems. Recent literature has indicated that there exists a trade-off in information and power flow and that intelligent, coordinated control of power flow in a microgrid system (i.e. such as an electric ship) can modify energy storage hardware requirements. The control presented herein was developed to provide the necessary flexibility with little computational burden. It is described analytically and then demonstrated in simulation and hardware.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel model predictive control algorithm to suppress the zero-sequence circulating currents for parallel three-phase voltage source inverters Mode transition control strategy for multiple inverter based distributed generators operating in grid-connected and stand-alone mode Stability analysis and improvement of solid state transformer (SST)-paralleled inverters system using negative impedance feedback control Active common-mode voltage reduction in a fault-tolerant three-phase inverter A sustained increase of input current distortion in active input current shapers to eliminate electrolytic capacitor for designing ac to dc HB-LED drivers for retrofit lamps applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1