采用霍尔效应电流传感器的自动多通道直流偏置老化测试系统

Rıdvan Sürbahanli, Kağan Berk Tanaydin
{"title":"采用霍尔效应电流传感器的自动多通道直流偏置老化测试系统","authors":"Rıdvan Sürbahanli, Kağan Berk Tanaydin","doi":"10.1109/AUTEST.2018.8532525","DOIUrl":null,"url":null,"abstract":"This manuscript reports on a fast, accurate, and cost-effective current sensing technique for multi-channel DC-biased burn-in test systems. Hybrid microwave modules designed for military and space platforms must be undergone electrical burn-in and life tests according to the production-level military and space qualification standards. These tests require prolonged test durations on the order of hundreds of hours and multi-channel test setups along with the continuous current monitoring and recording for each device under test (DUT). Current monitoring for a single channel setup is quite straightforward. However, for multi-channel test scenario, using the conventional test methods with specific power supply for each DUT may lead to costly and bulky systems. Precision Hall-effect current sensor is a good alternative monitoring the current of DUTs using a common power supply. For such a current sensor, as the current flows through the copper conduction path, it creates a magnetic field that is sensed by the integrated Hall integrated circuit (IC) and converted into a linearly proportional voltage. To digitize the output voltage of the sensor, a precision analog-to-digital converter (ADC) with SPI or I2C communication interface is used. One advantage of using the Hall sensor structure for measuring the target current will result in minimal power loss due to the non-contact inductive detection. In addition to the utilization of Hall-effect current sensor, we implemented single-pole-single-throw (SPST) switch and fast acting fuse for each DUT line in order to protect the system, in case of an early failure in the DUTs. As a result, using the abovementioned configuration we conducted DC burn-in and life tests on various radio frequency (RF) and microwave (MW) high power hybrid modules.","PeriodicalId":384058,"journal":{"name":"2018 IEEE AUTOTESTCON","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automated Multi-Channel DC-Biased Burn-in Test System using Hall Effect Current Sensor\",\"authors\":\"Rıdvan Sürbahanli, Kağan Berk Tanaydin\",\"doi\":\"10.1109/AUTEST.2018.8532525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This manuscript reports on a fast, accurate, and cost-effective current sensing technique for multi-channel DC-biased burn-in test systems. Hybrid microwave modules designed for military and space platforms must be undergone electrical burn-in and life tests according to the production-level military and space qualification standards. These tests require prolonged test durations on the order of hundreds of hours and multi-channel test setups along with the continuous current monitoring and recording for each device under test (DUT). Current monitoring for a single channel setup is quite straightforward. However, for multi-channel test scenario, using the conventional test methods with specific power supply for each DUT may lead to costly and bulky systems. Precision Hall-effect current sensor is a good alternative monitoring the current of DUTs using a common power supply. For such a current sensor, as the current flows through the copper conduction path, it creates a magnetic field that is sensed by the integrated Hall integrated circuit (IC) and converted into a linearly proportional voltage. To digitize the output voltage of the sensor, a precision analog-to-digital converter (ADC) with SPI or I2C communication interface is used. One advantage of using the Hall sensor structure for measuring the target current will result in minimal power loss due to the non-contact inductive detection. In addition to the utilization of Hall-effect current sensor, we implemented single-pole-single-throw (SPST) switch and fast acting fuse for each DUT line in order to protect the system, in case of an early failure in the DUTs. As a result, using the abovementioned configuration we conducted DC burn-in and life tests on various radio frequency (RF) and microwave (MW) high power hybrid modules.\",\"PeriodicalId\":384058,\"journal\":{\"name\":\"2018 IEEE AUTOTESTCON\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE AUTOTESTCON\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AUTEST.2018.8532525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE AUTOTESTCON","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AUTEST.2018.8532525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文报告了一种快速、准确、经济高效的多通道直流偏置老化测试系统电流传感技术。为军用和航天平台设计的混合微波模块必须按照生产级军用和航天资质标准进行电气老化和寿命试验。这些测试需要数百小时的测试持续时间和多通道测试设置,以及对每个被测设备(DUT)的连续电流监测和记录。单个通道设置的当前监控非常简单。然而,对于多通道测试场景,使用传统的测试方法为每个被测件提供特定的电源可能会导致系统成本高且体积大。精密霍尔效应电流传感器是使用普通电源监测被测设备电流的一个很好的替代方案。对于这样的电流传感器,当电流流过铜传导路径时,它会产生一个磁场,该磁场被集成霍尔集成电路(IC)感知并转换成线性比例的电压。为了实现传感器输出电压的数字化,采用了带SPI或I2C通信接口的精密模数转换器(ADC)。使用霍尔传感器结构测量目标电流的一个优点是,由于采用非接触式电感检测,功率损失最小。除了利用霍尔效应电流传感器外,我们还为每条被测线路实施了单极单掷(SPST)开关和快速保险丝,以便在被测设备早期故障时保护系统。因此,使用上述配置,我们对各种射频(RF)和微波(MW)大功率混合模块进行了直流老化和寿命测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automated Multi-Channel DC-Biased Burn-in Test System using Hall Effect Current Sensor
This manuscript reports on a fast, accurate, and cost-effective current sensing technique for multi-channel DC-biased burn-in test systems. Hybrid microwave modules designed for military and space platforms must be undergone electrical burn-in and life tests according to the production-level military and space qualification standards. These tests require prolonged test durations on the order of hundreds of hours and multi-channel test setups along with the continuous current monitoring and recording for each device under test (DUT). Current monitoring for a single channel setup is quite straightforward. However, for multi-channel test scenario, using the conventional test methods with specific power supply for each DUT may lead to costly and bulky systems. Precision Hall-effect current sensor is a good alternative monitoring the current of DUTs using a common power supply. For such a current sensor, as the current flows through the copper conduction path, it creates a magnetic field that is sensed by the integrated Hall integrated circuit (IC) and converted into a linearly proportional voltage. To digitize the output voltage of the sensor, a precision analog-to-digital converter (ADC) with SPI or I2C communication interface is used. One advantage of using the Hall sensor structure for measuring the target current will result in minimal power loss due to the non-contact inductive detection. In addition to the utilization of Hall-effect current sensor, we implemented single-pole-single-throw (SPST) switch and fast acting fuse for each DUT line in order to protect the system, in case of an early failure in the DUTs. As a result, using the abovementioned configuration we conducted DC burn-in and life tests on various radio frequency (RF) and microwave (MW) high power hybrid modules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spread Spectrum Time Domain Reflectometry for Complex Impedances: Application to PV Arrays Challenges and Solutions for Testing Modern Optically Networked Weapon Systems Test Challenges of Multi-Gigabit Serial Buses Automated Testing Importance and Impact Research on fast and intelligent calibration method based on automatic test system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1