{"title":"非线性动态系统辨识的自适应神经网络","authors":"Erwin Sitompul","doi":"10.1109/CIMSIM.2013.10","DOIUrl":null,"url":null,"abstract":"A new scheme for adaptive neural networks for nonlinear dynamic system identification is proposed in this paper. The network of structure multi-layer perceptron with external recurrence is trained offline at first to get the initial network parameters. The parameters of the network are classified into short-term memory part and long-term memory part. The short-term memory part includes the parameters which are linear to the network output. In the implementation, the network is validated in each sampling time using a set of new measurement data. Training procedure will be executed if the model error exceeds a specified value and the short-term memory part will be adjusted. The application in modelling of room thermal behaviour demonstrates the performance of the proposed scheme.","PeriodicalId":249355,"journal":{"name":"2013 Fifth International Conference on Computational Intelligence, Modelling and Simulation","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Adaptive Neural Networks for Nonlinear Dynamic Systems Identification\",\"authors\":\"Erwin Sitompul\",\"doi\":\"10.1109/CIMSIM.2013.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new scheme for adaptive neural networks for nonlinear dynamic system identification is proposed in this paper. The network of structure multi-layer perceptron with external recurrence is trained offline at first to get the initial network parameters. The parameters of the network are classified into short-term memory part and long-term memory part. The short-term memory part includes the parameters which are linear to the network output. In the implementation, the network is validated in each sampling time using a set of new measurement data. Training procedure will be executed if the model error exceeds a specified value and the short-term memory part will be adjusted. The application in modelling of room thermal behaviour demonstrates the performance of the proposed scheme.\",\"PeriodicalId\":249355,\"journal\":{\"name\":\"2013 Fifth International Conference on Computational Intelligence, Modelling and Simulation\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Fifth International Conference on Computational Intelligence, Modelling and Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIMSIM.2013.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fifth International Conference on Computational Intelligence, Modelling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIMSIM.2013.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive Neural Networks for Nonlinear Dynamic Systems Identification
A new scheme for adaptive neural networks for nonlinear dynamic system identification is proposed in this paper. The network of structure multi-layer perceptron with external recurrence is trained offline at first to get the initial network parameters. The parameters of the network are classified into short-term memory part and long-term memory part. The short-term memory part includes the parameters which are linear to the network output. In the implementation, the network is validated in each sampling time using a set of new measurement data. Training procedure will be executed if the model error exceeds a specified value and the short-term memory part will be adjusted. The application in modelling of room thermal behaviour demonstrates the performance of the proposed scheme.