非线性动态系统辨识的自适应神经网络

Erwin Sitompul
{"title":"非线性动态系统辨识的自适应神经网络","authors":"Erwin Sitompul","doi":"10.1109/CIMSIM.2013.10","DOIUrl":null,"url":null,"abstract":"A new scheme for adaptive neural networks for nonlinear dynamic system identification is proposed in this paper. The network of structure multi-layer perceptron with external recurrence is trained offline at first to get the initial network parameters. The parameters of the network are classified into short-term memory part and long-term memory part. The short-term memory part includes the parameters which are linear to the network output. In the implementation, the network is validated in each sampling time using a set of new measurement data. Training procedure will be executed if the model error exceeds a specified value and the short-term memory part will be adjusted. The application in modelling of room thermal behaviour demonstrates the performance of the proposed scheme.","PeriodicalId":249355,"journal":{"name":"2013 Fifth International Conference on Computational Intelligence, Modelling and Simulation","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Adaptive Neural Networks for Nonlinear Dynamic Systems Identification\",\"authors\":\"Erwin Sitompul\",\"doi\":\"10.1109/CIMSIM.2013.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new scheme for adaptive neural networks for nonlinear dynamic system identification is proposed in this paper. The network of structure multi-layer perceptron with external recurrence is trained offline at first to get the initial network parameters. The parameters of the network are classified into short-term memory part and long-term memory part. The short-term memory part includes the parameters which are linear to the network output. In the implementation, the network is validated in each sampling time using a set of new measurement data. Training procedure will be executed if the model error exceeds a specified value and the short-term memory part will be adjusted. The application in modelling of room thermal behaviour demonstrates the performance of the proposed scheme.\",\"PeriodicalId\":249355,\"journal\":{\"name\":\"2013 Fifth International Conference on Computational Intelligence, Modelling and Simulation\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Fifth International Conference on Computational Intelligence, Modelling and Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIMSIM.2013.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fifth International Conference on Computational Intelligence, Modelling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIMSIM.2013.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种用于非线性动态系统辨识的自适应神经网络新方案。首先对具有外递归结构的多层感知器网络进行离线训练,得到网络的初始参数。网络参数分为短时记忆部分和长时记忆部分。短时记忆部分包括与网络输出成线性关系的参数。在实现中,使用一组新的测量数据在每个采样时间对网络进行验证。当模型误差超过某一设定值时,执行训练程序,并对短时记忆部分进行调整。在室内热行为建模中的应用证明了该方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive Neural Networks for Nonlinear Dynamic Systems Identification
A new scheme for adaptive neural networks for nonlinear dynamic system identification is proposed in this paper. The network of structure multi-layer perceptron with external recurrence is trained offline at first to get the initial network parameters. The parameters of the network are classified into short-term memory part and long-term memory part. The short-term memory part includes the parameters which are linear to the network output. In the implementation, the network is validated in each sampling time using a set of new measurement data. Training procedure will be executed if the model error exceeds a specified value and the short-term memory part will be adjusted. The application in modelling of room thermal behaviour demonstrates the performance of the proposed scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of Software Quality Standards on Commercial Product Development and Customer Satisfaction for Software Industry in Pakistan Bringing Semantic Resources Together in the Cloud: From Theory to Application A Unified Architecture for a Dual Field ECC Processor Applicable to AES Comparison of Back Propagation and Resilient Propagation Algorithm for Spam Classification HIPAA Based Predictive Analytics for an Adaptive and Descriptive Mobile Healthcare System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1