用于8×8 MIMO预处理的0.18nJ/矩阵QR分解和晶格约简处理器

Chun-Fu Liao, Jhong-Yu Wang, Yuan-Hao Huang
{"title":"用于8×8 MIMO预处理的0.18nJ/矩阵QR分解和晶格约简处理器","authors":"Chun-Fu Liao, Jhong-Yu Wang, Yuan-Hao Huang","doi":"10.1109/ASSCC.2013.6691007","DOIUrl":null,"url":null,"abstract":"This study presents a joint QR decomposition and lattice reduction processor for 8×8 multiple-input multiple-output (MIMO) systems. The proposed algorithm enhances the BER performance by lattice reduction and reduces the hardware cost by sharing computation units and removing redundant operations. This processor can be reconfigured as three different modes, including joint QR decomposition and lattice reduction, lattice reduction, and QR decomposition. The proposed processor was implemented in TSMC 90nm 1P9M CMOS technology. The maximum throughput is 1.1 M matrix/s for QR decomposition, and 0.5 M matrix/s for the lattice reduction, and 0.33 M matrix/s for the joint QR decomposition and lattice reduction at a power consumption of 31.2 mW. The energy efficiency achieves 0.18nJ/matrix for the 8×8 MIMO preprocessing including both QR decomposition and lattice reduction.","PeriodicalId":296544,"journal":{"name":"2013 IEEE Asian Solid-State Circuits Conference (A-SSCC)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A 0.18nJ/Matrix QR decomposition and lattice reduction processor for 8×8 MIMO preprocessing\",\"authors\":\"Chun-Fu Liao, Jhong-Yu Wang, Yuan-Hao Huang\",\"doi\":\"10.1109/ASSCC.2013.6691007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a joint QR decomposition and lattice reduction processor for 8×8 multiple-input multiple-output (MIMO) systems. The proposed algorithm enhances the BER performance by lattice reduction and reduces the hardware cost by sharing computation units and removing redundant operations. This processor can be reconfigured as three different modes, including joint QR decomposition and lattice reduction, lattice reduction, and QR decomposition. The proposed processor was implemented in TSMC 90nm 1P9M CMOS technology. The maximum throughput is 1.1 M matrix/s for QR decomposition, and 0.5 M matrix/s for the lattice reduction, and 0.33 M matrix/s for the joint QR decomposition and lattice reduction at a power consumption of 31.2 mW. The energy efficiency achieves 0.18nJ/matrix for the 8×8 MIMO preprocessing including both QR decomposition and lattice reduction.\",\"PeriodicalId\":296544,\"journal\":{\"name\":\"2013 IEEE Asian Solid-State Circuits Conference (A-SSCC)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Asian Solid-State Circuits Conference (A-SSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASSCC.2013.6691007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Asian Solid-State Circuits Conference (A-SSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASSCC.2013.6691007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种用于8×8多输入多输出(MIMO)系统的联合QR分解和晶格约简处理器。该算法通过格约简提高了误码率,通过共享计算单元和去除冗余运算降低了硬件开销。该处理器可以重新配置为三种不同的模式,包括联合QR分解和晶格约简、晶格约简和QR分解。该处理器采用台积电90nm 1P9M CMOS技术实现。QR分解的最大吞吐量为1.1 M矩阵/s,晶格约简的最大吞吐量为0.5 M矩阵/s, QR分解和晶格约简联合的最大吞吐量为0.33 M矩阵/s,功耗为31.2 mW。对于8×8 MIMO预处理,包括QR分解和晶格化简,能量效率达到0.18nJ/matrix。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A 0.18nJ/Matrix QR decomposition and lattice reduction processor for 8×8 MIMO preprocessing
This study presents a joint QR decomposition and lattice reduction processor for 8×8 multiple-input multiple-output (MIMO) systems. The proposed algorithm enhances the BER performance by lattice reduction and reduces the hardware cost by sharing computation units and removing redundant operations. This processor can be reconfigured as three different modes, including joint QR decomposition and lattice reduction, lattice reduction, and QR decomposition. The proposed processor was implemented in TSMC 90nm 1P9M CMOS technology. The maximum throughput is 1.1 M matrix/s for QR decomposition, and 0.5 M matrix/s for the lattice reduction, and 0.33 M matrix/s for the joint QR decomposition and lattice reduction at a power consumption of 31.2 mW. The energy efficiency achieves 0.18nJ/matrix for the 8×8 MIMO preprocessing including both QR decomposition and lattice reduction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Future mobile society beyond Moore's Law A 691 Mbps 1.392mm2 configurable radix-16 turbo decoder ASIC for 3GPP-LTE and WiMAX systems in 65nm CMOS Collaborative innovation for future mobile applications A 0.5V 34.4uW 14.28kfps 105dB smart image sensor with array-level analog signal processing An 85mW 14-bit 150MS/s pipelined ADC with 71.3dB peak SNDR in 130nm CMOS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1