智能过程控制的自优化控制框架与基准

J. Viola, Y. Chen
{"title":"智能过程控制的自优化控制框架与基准","authors":"J. Viola, Y. Chen","doi":"10.1109/IAI53119.2021.9619356","DOIUrl":null,"url":null,"abstract":"Industry 4.0 requires introducing smart capabilities into the classic process control that makes the system aware of its current health status, modifying its closed-loop controller parameters or references to ensure the optimal performance of a system under acceptable conditions. This paper presents a Self Optimizing Control (SOC) framework using a Real-Time Globalized Constrain Nelder Mead optimization algorithm supported by the system closed-loop performance specification to control a thermal system. A simulation benchmark is designed to assess the SOC controller performance using a normalized First Order Plus Dead Time model of the thermal system. Obtained results show that the SOC controller can reach the desired closed-loop performance after multiple periodic reference executions of the system.","PeriodicalId":106675,"journal":{"name":"2021 3rd International Conference on Industrial Artificial Intelligence (IAI)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Self Optimizing Control Framework and A Benchmark for Smart Process Control\",\"authors\":\"J. Viola, Y. Chen\",\"doi\":\"10.1109/IAI53119.2021.9619356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Industry 4.0 requires introducing smart capabilities into the classic process control that makes the system aware of its current health status, modifying its closed-loop controller parameters or references to ensure the optimal performance of a system under acceptable conditions. This paper presents a Self Optimizing Control (SOC) framework using a Real-Time Globalized Constrain Nelder Mead optimization algorithm supported by the system closed-loop performance specification to control a thermal system. A simulation benchmark is designed to assess the SOC controller performance using a normalized First Order Plus Dead Time model of the thermal system. Obtained results show that the SOC controller can reach the desired closed-loop performance after multiple periodic reference executions of the system.\",\"PeriodicalId\":106675,\"journal\":{\"name\":\"2021 3rd International Conference on Industrial Artificial Intelligence (IAI)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 3rd International Conference on Industrial Artificial Intelligence (IAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAI53119.2021.9619356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 3rd International Conference on Industrial Artificial Intelligence (IAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI53119.2021.9619356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

工业4.0要求在经典过程控制中引入智能功能,使系统了解其当前健康状态,修改其闭环控制器参数或参考,以确保系统在可接受条件下的最佳性能。本文提出了一种自优化控制框架,该框架采用系统闭环性能规范支持的实时全球化约束Nelder Mead优化算法来控制热系统。设计了一个仿真基准,利用热系统的标准化一阶加死区时间模型来评估SOC控制器的性能。结果表明,经过系统的多次周期参考执行,SOC控制器可以达到理想的闭环性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Self Optimizing Control Framework and A Benchmark for Smart Process Control
Industry 4.0 requires introducing smart capabilities into the classic process control that makes the system aware of its current health status, modifying its closed-loop controller parameters or references to ensure the optimal performance of a system under acceptable conditions. This paper presents a Self Optimizing Control (SOC) framework using a Real-Time Globalized Constrain Nelder Mead optimization algorithm supported by the system closed-loop performance specification to control a thermal system. A simulation benchmark is designed to assess the SOC controller performance using a normalized First Order Plus Dead Time model of the thermal system. Obtained results show that the SOC controller can reach the desired closed-loop performance after multiple periodic reference executions of the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on self-maintenance strategy of CNC machine tools based on case-based reasoning An Improved RRT* Algorithm Combining Motion Constraint and Artificial Potential Field for Robot-Assisted Flexible Needle Insertion in 3D Environment Relative Stability Analysis Method of Systems Based on Goal Seek Operation Optimization of Park Integrated Energy System Considering the Response of Electricity and Cooling Demand Privacy-Preserving Push-sum Average Consensus Algorithm over Directed Graph Via State Decomposition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1