受限玻尔兹曼机图像压缩

Markus Kuchhold, Maik Simon, T. Sikora
{"title":"受限玻尔兹曼机图像压缩","authors":"Markus Kuchhold, Maik Simon, T. Sikora","doi":"10.1109/PCS.2018.8456279","DOIUrl":null,"url":null,"abstract":"We propose a novel lossy block-based image compression approach. Our approach builds on non-linear autoencoders that can, when properly trained, explore non-linear statistical dependencies in the image blocks for redundancy reduction. In contrast the DCT employed in JPEG is inherently restricted to exploration of linear dependencies using a second-order statistics framework. The coder is based on pre-trained class-specific Restricted Boltzmann Machines (RBM). These machines are statistical variants of neural network autoencoders that directly map pixel values in image blocks into coded bits. Decoders can be implemented with low computational complexity in a codebook design. Experimental results show that our RBM-codec outperforms JPEG at high compression rates, both in terms of PSNR, SSIM and subjective results.","PeriodicalId":433667,"journal":{"name":"2018 Picture Coding Symposium (PCS)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Restricted Boltzmann Machine Image Compression\",\"authors\":\"Markus Kuchhold, Maik Simon, T. Sikora\",\"doi\":\"10.1109/PCS.2018.8456279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel lossy block-based image compression approach. Our approach builds on non-linear autoencoders that can, when properly trained, explore non-linear statistical dependencies in the image blocks for redundancy reduction. In contrast the DCT employed in JPEG is inherently restricted to exploration of linear dependencies using a second-order statistics framework. The coder is based on pre-trained class-specific Restricted Boltzmann Machines (RBM). These machines are statistical variants of neural network autoencoders that directly map pixel values in image blocks into coded bits. Decoders can be implemented with low computational complexity in a codebook design. Experimental results show that our RBM-codec outperforms JPEG at high compression rates, both in terms of PSNR, SSIM and subjective results.\",\"PeriodicalId\":433667,\"journal\":{\"name\":\"2018 Picture Coding Symposium (PCS)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Picture Coding Symposium (PCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PCS.2018.8456279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Picture Coding Symposium (PCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCS.2018.8456279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种基于有损块的图像压缩方法。我们的方法建立在非线性自编码器的基础上,经过适当的训练,可以探索图像块中的非线性统计依赖关系以减少冗余。相比之下,JPEG中使用的DCT本质上仅限于使用二阶统计框架来探索线性依赖关系。编码器是基于预训练类特定的受限玻尔兹曼机(RBM)。这些机器是神经网络自动编码器的统计变体,直接将图像块中的像素值映射到编码位。解码器可以在码本设计中以较低的计算复杂度实现。实验结果表明,在高压缩率下,我们的rbm编解码器在PSNR、SSIM和主观结果方面都优于JPEG。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Restricted Boltzmann Machine Image Compression
We propose a novel lossy block-based image compression approach. Our approach builds on non-linear autoencoders that can, when properly trained, explore non-linear statistical dependencies in the image blocks for redundancy reduction. In contrast the DCT employed in JPEG is inherently restricted to exploration of linear dependencies using a second-order statistics framework. The coder is based on pre-trained class-specific Restricted Boltzmann Machines (RBM). These machines are statistical variants of neural network autoencoders that directly map pixel values in image blocks into coded bits. Decoders can be implemented with low computational complexity in a codebook design. Experimental results show that our RBM-codec outperforms JPEG at high compression rates, both in terms of PSNR, SSIM and subjective results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Future Video Coding Technologies: A Performance Evaluation of AV1, JEM, VP9, and HM Joint Optimization of Rate, Distortion, and Maximum Absolute Error for Compression of Medical Volumes Using HEVC Intra Wavelet Decomposition Pre-processing for Spatial Scalability Video Compression Scheme Detecting Source Video Artifacts with Supervised Sparse Filters Perceptually-Aligned Frame Rate Selection Using Spatio-Temporal Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1