基于分层粒子群优化的低功耗低压模拟电路设计

R. Thakker, M. Baghini, M. Patil
{"title":"基于分层粒子群优化的低功耗低压模拟电路设计","authors":"R. Thakker, M. Baghini, M. Patil","doi":"10.1109/VLSI.Design.2009.14","DOIUrl":null,"url":null,"abstract":"This paper presents application and effectiveness of Hierarchical particle swarm optimization (HPSO) algorithm for automatic sizing of low-power analog circuits. For the purpose of comparison, circuits are also designed using PSO and Genetic Algorithm (GA). CMOS technologies from 0.35 µm down to 0.13 µm are used. PVT (process, voltage, temperature) variations are considered during the design of circuits. We show that HPSO algorithm converges to a better solution, compared to PSO and GA. For CMOS Miller OTA, even performance of the circuit designed by HPSO algorithm is better than the performance of recently reported manually designed circuit. For the first time, design of this OTA, in 0.4 V supply voltage, is also presented. For this new design, HPSO algorithm has taken 23.5 minutes of CPU time on a Sun system with1.2 GHz processor and 8 GB RAM.","PeriodicalId":267121,"journal":{"name":"2009 22nd International Conference on VLSI Design","volume":"151 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"Low-Power Low-Voltage Analog Circuit Design Using Hierarchical Particle Swarm Optimization\",\"authors\":\"R. Thakker, M. Baghini, M. Patil\",\"doi\":\"10.1109/VLSI.Design.2009.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents application and effectiveness of Hierarchical particle swarm optimization (HPSO) algorithm for automatic sizing of low-power analog circuits. For the purpose of comparison, circuits are also designed using PSO and Genetic Algorithm (GA). CMOS technologies from 0.35 µm down to 0.13 µm are used. PVT (process, voltage, temperature) variations are considered during the design of circuits. We show that HPSO algorithm converges to a better solution, compared to PSO and GA. For CMOS Miller OTA, even performance of the circuit designed by HPSO algorithm is better than the performance of recently reported manually designed circuit. For the first time, design of this OTA, in 0.4 V supply voltage, is also presented. For this new design, HPSO algorithm has taken 23.5 minutes of CPU time on a Sun system with1.2 GHz processor and 8 GB RAM.\",\"PeriodicalId\":267121,\"journal\":{\"name\":\"2009 22nd International Conference on VLSI Design\",\"volume\":\"151 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 22nd International Conference on VLSI Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSI.Design.2009.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 22nd International Conference on VLSI Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSI.Design.2009.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

摘要

本文介绍了层次粒子群优化算法在低功耗模拟电路自动尺寸设计中的应用及其有效性。为了比较,还采用粒子群算法和遗传算法设计了电路。从0.35µm到0.13µm的CMOS技术被使用。PVT(过程、电压、温度)变化在电路设计中被考虑。我们证明了与粒子群算法和遗传算法相比,HPSO算法收敛到一个更好的解。对于CMOS Miller OTA而言,采用HPSO算法设计的电路的均匀性能优于最近报道的人工设计电路的性能。本文还首次提出了在0.4 V电源电压下的OTA设计。对于这种新设计,在具有1.2 GHz处理器和8gb RAM的Sun系统上,HPSO算法占用了23.5分钟的CPU时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low-Power Low-Voltage Analog Circuit Design Using Hierarchical Particle Swarm Optimization
This paper presents application and effectiveness of Hierarchical particle swarm optimization (HPSO) algorithm for automatic sizing of low-power analog circuits. For the purpose of comparison, circuits are also designed using PSO and Genetic Algorithm (GA). CMOS technologies from 0.35 µm down to 0.13 µm are used. PVT (process, voltage, temperature) variations are considered during the design of circuits. We show that HPSO algorithm converges to a better solution, compared to PSO and GA. For CMOS Miller OTA, even performance of the circuit designed by HPSO algorithm is better than the performance of recently reported manually designed circuit. For the first time, design of this OTA, in 0.4 V supply voltage, is also presented. For this new design, HPSO algorithm has taken 23.5 minutes of CPU time on a Sun system with1.2 GHz processor and 8 GB RAM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DFX and Productivity Design of a Low Power, Variable-Resolution Flash ADC Switched-Capacitor Based Buck Converter Design Using Current Limiter for Better Efficiency and Output Ripple Synthesis & Testing for Low Power A Novel Approach for Improving the Quality of Open Fault Diagnosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1