一种具有垂直安装机械手的全向海底作业机器人平台

Binbin Zhang, Kailuan Tang, Yishan Chen, Kehan Zou, Yin Xiao, Zhonggui Fang, Qinlin Tan, Zhongzhe Shen, Sicong Liu, Juan Yi, Zheng Wang
{"title":"一种具有垂直安装机械手的全向海底作业机器人平台","authors":"Binbin Zhang, Kailuan Tang, Yishan Chen, Kehan Zou, Yin Xiao, Zhonggui Fang, Qinlin Tan, Zhongzhe Shen, Sicong Liu, Juan Yi, Zheng Wang","doi":"10.1109/CASE49439.2021.9551420","DOIUrl":null,"url":null,"abstract":"Water visibility is a critical matter for underwater robots during operations, both for getting clear views of the environment, and as a calm and disturbance-free operating region for the manipulators to perform sampling or other operations. In reality, calm and clear water is not only restricted by the natural conditions, but also often hindered by the propeller operations from the robots themselves. Frequent gesture adjustments during manipulator operations are particularly stir-inducing from state-of-the-art underwater manipulative robots. In this work, tackling the flow disturbance issue, a novel underwater robotic platform was proposed with a jellyfish-inspired holonomic platform driven by propellers, a flow-deflection middle layer as an adjustable isolation, and a soft-robotic manipulator mounted below the bottom for operations. Compared with state-of-the-art works, the proposed platform achieved holonomic underwater locomotion with the vertical main direction having significantly reduced flow resistance; the flow-deflection layer could create a flow-calm region of 18.5 times larger underneath for the manipulator operations. A prototype robot was fabricated, and tested in closed- and open-water conditions. Results were compared to flow-simulation results with good agreements, verifying that the proposed jellyfish-inspired robotic concept was effective in both asymmetric underwater locomotion and reducing water disturbances for underwater manipulator operations.","PeriodicalId":232083,"journal":{"name":"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Omnidirectional Robotic Platform with a Vertically Mounted Manipulator for Seabed Operation\",\"authors\":\"Binbin Zhang, Kailuan Tang, Yishan Chen, Kehan Zou, Yin Xiao, Zhonggui Fang, Qinlin Tan, Zhongzhe Shen, Sicong Liu, Juan Yi, Zheng Wang\",\"doi\":\"10.1109/CASE49439.2021.9551420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Water visibility is a critical matter for underwater robots during operations, both for getting clear views of the environment, and as a calm and disturbance-free operating region for the manipulators to perform sampling or other operations. In reality, calm and clear water is not only restricted by the natural conditions, but also often hindered by the propeller operations from the robots themselves. Frequent gesture adjustments during manipulator operations are particularly stir-inducing from state-of-the-art underwater manipulative robots. In this work, tackling the flow disturbance issue, a novel underwater robotic platform was proposed with a jellyfish-inspired holonomic platform driven by propellers, a flow-deflection middle layer as an adjustable isolation, and a soft-robotic manipulator mounted below the bottom for operations. Compared with state-of-the-art works, the proposed platform achieved holonomic underwater locomotion with the vertical main direction having significantly reduced flow resistance; the flow-deflection layer could create a flow-calm region of 18.5 times larger underneath for the manipulator operations. A prototype robot was fabricated, and tested in closed- and open-water conditions. Results were compared to flow-simulation results with good agreements, verifying that the proposed jellyfish-inspired robotic concept was effective in both asymmetric underwater locomotion and reducing water disturbances for underwater manipulator operations.\",\"PeriodicalId\":232083,\"journal\":{\"name\":\"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CASE49439.2021.9551420\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASE49439.2021.9551420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

水下能见度是水下机器人在操作过程中的一个关键问题,既可以获得清晰的环境视图,也可以作为一个平静和无干扰的操作区域,供机械手进行采样或其他操作。在现实中,平静清澈的海水不仅受到自然条件的限制,还经常受到机器人自身螺旋桨操作的阻碍。在机械臂操作过程中频繁的手势调整对最先进的水下操纵机器人来说尤其令人激动。为了解决水流干扰问题,本文提出了一种新型水下机器人平台,该平台采用了由螺旋桨驱动的水母形状的完整平台,中间层作为可调节的流动偏转隔离层,底部下方安装了软机器人机械手进行操作。与现有工程相比,该平台实现了水下整体运动,垂直主方向的流动阻力显著降低;流动偏转层可在其下方形成18.5倍的流动平静区,供机械手操作。制作了一个原型机器人,并在封闭和开放的水条件下进行了测试。结果与流动仿真结果吻合良好,验证了水母机器人概念在水下非对称运动和减少水下机械臂操作的水干扰方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Omnidirectional Robotic Platform with a Vertically Mounted Manipulator for Seabed Operation
Water visibility is a critical matter for underwater robots during operations, both for getting clear views of the environment, and as a calm and disturbance-free operating region for the manipulators to perform sampling or other operations. In reality, calm and clear water is not only restricted by the natural conditions, but also often hindered by the propeller operations from the robots themselves. Frequent gesture adjustments during manipulator operations are particularly stir-inducing from state-of-the-art underwater manipulative robots. In this work, tackling the flow disturbance issue, a novel underwater robotic platform was proposed with a jellyfish-inspired holonomic platform driven by propellers, a flow-deflection middle layer as an adjustable isolation, and a soft-robotic manipulator mounted below the bottom for operations. Compared with state-of-the-art works, the proposed platform achieved holonomic underwater locomotion with the vertical main direction having significantly reduced flow resistance; the flow-deflection layer could create a flow-calm region of 18.5 times larger underneath for the manipulator operations. A prototype robot was fabricated, and tested in closed- and open-water conditions. Results were compared to flow-simulation results with good agreements, verifying that the proposed jellyfish-inspired robotic concept was effective in both asymmetric underwater locomotion and reducing water disturbances for underwater manipulator operations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Planar Pushing of Unknown Objects Using a Large-Scale Simulation Dataset and Few-Shot Learning A configurator for supervisory controllers of roadside systems Maintaining Connectivity in Multi-Rover Networks for Lunar Exploration Missions VLC-SE: Visual-Lengthwise Configuration Self-Estimator of Continuum Robots Multi-zone indoor temperature prediction based on Graph Attention Network and Gated Recurrent Unit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1