嵌入式处理器上运动估计内存转移的能量分析

Henrique Maich, Mateus Melo, L. Agostini, B. Zatt, M. Porto
{"title":"嵌入式处理器上运动估计内存转移的能量分析","authors":"Henrique Maich, Mateus Melo, L. Agostini, B. Zatt, M. Porto","doi":"10.1109/LASCAS.2016.7451074","DOIUrl":null,"url":null,"abstract":"This paper presents a memory-transference analysis to a parallel Motion Estimation (ME) algorithms for current embedded processors, that usually are composed by a CPU and GPU with OpenCL parallel-programming support. However, in this scope, the CPU and GPU memories are different, thus being necessary a memory transference data between then. This paper introduces the main concepts of the ME, discusses its related problems and proposes different approaches for CPU and GPU memory transference. Three different approaches for reference frame transference was evaluated and tested using three different ME algorithms. The experiments evaluated the time performance and the energy consumption of all tests considering each proposed memory transference approaches. The results indicate that the best solution of memory transference is using the Full Frame approach, where each reference frame was transferred to the GPU memory for every new current frame.","PeriodicalId":129875,"journal":{"name":"2016 IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Energy analisys of motion estimation memory transference on embedded processors\",\"authors\":\"Henrique Maich, Mateus Melo, L. Agostini, B. Zatt, M. Porto\",\"doi\":\"10.1109/LASCAS.2016.7451074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a memory-transference analysis to a parallel Motion Estimation (ME) algorithms for current embedded processors, that usually are composed by a CPU and GPU with OpenCL parallel-programming support. However, in this scope, the CPU and GPU memories are different, thus being necessary a memory transference data between then. This paper introduces the main concepts of the ME, discusses its related problems and proposes different approaches for CPU and GPU memory transference. Three different approaches for reference frame transference was evaluated and tested using three different ME algorithms. The experiments evaluated the time performance and the energy consumption of all tests considering each proposed memory transference approaches. The results indicate that the best solution of memory transference is using the Full Frame approach, where each reference frame was transferred to the GPU memory for every new current frame.\",\"PeriodicalId\":129875,\"journal\":{\"name\":\"2016 IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LASCAS.2016.7451074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LASCAS.2016.7451074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文对当前嵌入式处理器的并行运动估计算法进行了内存传输分析,这些算法通常由CPU和GPU组成,并支持OpenCL并行编程。然而,在这个范围内,CPU和GPU的内存是不同的,因此需要一个内存在它们之间传输数据。本文介绍了ME的主要概念,讨论了其相关问题,并提出了CPU和GPU内存传输的不同方法。使用三种不同的ME算法评估和测试了三种不同的参考帧迁移方法。实验评估了所有测试的时间性能和能量消耗,考虑了每种提出的记忆转移方法。结果表明,内存传输的最佳解决方案是使用全帧方法,其中每个参考帧为每个新的当前帧传输到GPU内存。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energy analisys of motion estimation memory transference on embedded processors
This paper presents a memory-transference analysis to a parallel Motion Estimation (ME) algorithms for current embedded processors, that usually are composed by a CPU and GPU with OpenCL parallel-programming support. However, in this scope, the CPU and GPU memories are different, thus being necessary a memory transference data between then. This paper introduces the main concepts of the ME, discusses its related problems and proposes different approaches for CPU and GPU memory transference. Three different approaches for reference frame transference was evaluated and tested using three different ME algorithms. The experiments evaluated the time performance and the energy consumption of all tests considering each proposed memory transference approaches. The results indicate that the best solution of memory transference is using the Full Frame approach, where each reference frame was transferred to the GPU memory for every new current frame.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Energy harvesting with 3D-printed electrostatic generators A 30dBm PA for MTC communication in 65nm CMOS technology A low-cost microcontrolled dosimeter based on CD4007 devices for in vivo radiotherapy applications Telepresence using the kinect sensor and the NAO robot DC-DC switching converter as on-field self energy meter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1