数据集泛化:BERT用于自然语言推理的初步研究

Rubem G. Nanclarez, N. T. Roman, F. J. V. D. Silva
{"title":"数据集泛化:BERT用于自然语言推理的初步研究","authors":"Rubem G. Nanclarez, N. T. Roman, F. J. V. D. Silva","doi":"10.5753/eniac.2022.227593","DOIUrl":null,"url":null,"abstract":"Natural language inference is the task of automatically identifying whether a given text (premise) implies another (hypothesis). Among multiple possible applications, it is especially relevant in the legal field to understand textual entailment between legal sentences, being the focus of recent research efforts. In this work, we evaluated the usage of BERT for natural language inference by conducting experiments and comparing results obtained by testing on a larger corpus with texts from multiple domains and a smaller corpus of legal sentences. Furthermore, we conducted a cross-experiment by training on the larger corpus and testing on the legal corpus. As a result, we obtained a mean accuracy of 88.91% in the corpus with multiple domains, a value comparable to related work. However, the same technique presented lower scores in the legal corpus and the cross-experiment.","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"242 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Generalizing over data sets: a preliminary study with BERT for Natural Language Inference\",\"authors\":\"Rubem G. Nanclarez, N. T. Roman, F. J. V. D. Silva\",\"doi\":\"10.5753/eniac.2022.227593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Natural language inference is the task of automatically identifying whether a given text (premise) implies another (hypothesis). Among multiple possible applications, it is especially relevant in the legal field to understand textual entailment between legal sentences, being the focus of recent research efforts. In this work, we evaluated the usage of BERT for natural language inference by conducting experiments and comparing results obtained by testing on a larger corpus with texts from multiple domains and a smaller corpus of legal sentences. Furthermore, we conducted a cross-experiment by training on the larger corpus and testing on the legal corpus. As a result, we obtained a mean accuracy of 88.91% in the corpus with multiple domains, a value comparable to related work. However, the same technique presented lower scores in the legal corpus and the cross-experiment.\",\"PeriodicalId\":165095,\"journal\":{\"name\":\"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)\",\"volume\":\"242 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/eniac.2022.227593\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/eniac.2022.227593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

自然语言推理是自动识别给定文本(前提)是否暗示另一个(假设)的任务。在众多可能的应用中,理解法律句子之间的文本蕴涵在法律领域尤为重要,是近年来研究的重点。在这项工作中,我们通过进行实验来评估BERT在自然语言推理中的使用情况,并比较了在一个较大的语料库上测试来自多个领域的文本和一个较小的法律句子语料库所获得的结果。此外,我们通过在较大语料库上进行训练和在法律语料库上进行测试进行了交叉实验。结果,我们在多域语料库中获得了88.91%的平均准确率,与相关工作相当。然而,同样的方法在法律语料库和交叉实验中得分较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generalizing over data sets: a preliminary study with BERT for Natural Language Inference
Natural language inference is the task of automatically identifying whether a given text (premise) implies another (hypothesis). Among multiple possible applications, it is especially relevant in the legal field to understand textual entailment between legal sentences, being the focus of recent research efforts. In this work, we evaluated the usage of BERT for natural language inference by conducting experiments and comparing results obtained by testing on a larger corpus with texts from multiple domains and a smaller corpus of legal sentences. Furthermore, we conducted a cross-experiment by training on the larger corpus and testing on the legal corpus. As a result, we obtained a mean accuracy of 88.91% in the corpus with multiple domains, a value comparable to related work. However, the same technique presented lower scores in the legal corpus and the cross-experiment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of Learned OWA Operators in Pooling and Channel Aggregation Layers in Convolutional Neural Networks Improving steel making off-gas predictions by mixing classification and regression multi-modal multivariate models A Framework for prediction of dropout in distance learning through XAI techniques in Virtual Learning Environment Textile defect detection using YOLOv5 on AITEX Dataset Aspects of a learned model to predict the quality of life of university students in Brazil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1