深水系泊水箱试验装置的研制

Go Oishi, H. Yamaguchi, K. Shimada, Kouichi Kayajima
{"title":"深水系泊水箱试验装置的研制","authors":"Go Oishi, H. Yamaguchi, K. Shimada, Kouichi Kayajima","doi":"10.1115/OMAE2018-77090","DOIUrl":null,"url":null,"abstract":"When conducting model tests in a water tank, available model sizes and wave conditions are determined for each tank, depending on measurement accuracy and tank specifications. For deep-water mooring of a floater, a mooring extent in model scale is presumably over 10 meters in depth, making it difficult to be conducted in small-sized tanks without mooring line truncation. The purpose of the research is to develop a device, which could be used as deep-water mooring system in small-sized tanks. Although the law of geometrical similarity is compelled to quit because of the line truncation, the law of mechanical similarity can be maintained by keeping the same restoring, damping and inertia characteristics as those of the full-scale mooring system obtained by numerical simulations.\n The mooring device consists of a cylinder, a piston, an orifice, springs, pulleys and weights. A spring attached to the mooring line is to generate required restoring force. The orifice, together with the piston, is to generate required damping forces. Inertia forces are generated by the motions of hanged weights, also by the motion of the fluid inside the cylinder. Even negative inertia forces can be given by adjusting natural frequencies of the weight-spring system. With all these examined elements, the mooring device works like the full-depth mooring system. Particulars of the elements of the device have been determined by numerical simulations of the floater moored in the full-depth condition. It has been confirmed that the mooring device behaves as expected in comparison with forced oscillation tests, where prescribed motions were given to the floater-side end point of the mooring line.\n A tank test has been conducted of a floater with a turret multipoint-moored with the devices and has been satisfactorily compared with numerical simulations of the full-depth system. With the present research it is verified that the mooring device can well simulate actual deep-water mooring system, which makes it possible for small water tanks to deal with deep water mooring experiments.","PeriodicalId":124589,"journal":{"name":"Volume 7B: Ocean Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Water Tank Test Device for Deep-Water Mooring\",\"authors\":\"Go Oishi, H. Yamaguchi, K. Shimada, Kouichi Kayajima\",\"doi\":\"10.1115/OMAE2018-77090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When conducting model tests in a water tank, available model sizes and wave conditions are determined for each tank, depending on measurement accuracy and tank specifications. For deep-water mooring of a floater, a mooring extent in model scale is presumably over 10 meters in depth, making it difficult to be conducted in small-sized tanks without mooring line truncation. The purpose of the research is to develop a device, which could be used as deep-water mooring system in small-sized tanks. Although the law of geometrical similarity is compelled to quit because of the line truncation, the law of mechanical similarity can be maintained by keeping the same restoring, damping and inertia characteristics as those of the full-scale mooring system obtained by numerical simulations.\\n The mooring device consists of a cylinder, a piston, an orifice, springs, pulleys and weights. A spring attached to the mooring line is to generate required restoring force. The orifice, together with the piston, is to generate required damping forces. Inertia forces are generated by the motions of hanged weights, also by the motion of the fluid inside the cylinder. Even negative inertia forces can be given by adjusting natural frequencies of the weight-spring system. With all these examined elements, the mooring device works like the full-depth mooring system. Particulars of the elements of the device have been determined by numerical simulations of the floater moored in the full-depth condition. It has been confirmed that the mooring device behaves as expected in comparison with forced oscillation tests, where prescribed motions were given to the floater-side end point of the mooring line.\\n A tank test has been conducted of a floater with a turret multipoint-moored with the devices and has been satisfactorily compared with numerical simulations of the full-depth system. With the present research it is verified that the mooring device can well simulate actual deep-water mooring system, which makes it possible for small water tanks to deal with deep water mooring experiments.\",\"PeriodicalId\":124589,\"journal\":{\"name\":\"Volume 7B: Ocean Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 7B: Ocean Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/OMAE2018-77090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7B: Ocean Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/OMAE2018-77090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在水箱中进行模型试验时,根据测量精度和水箱规格,为每个水箱确定可用的模型尺寸和波浪条件。对于浮子的深水系泊,模型尺度上的系泊范围大概在10米深度以上,在不截断系泊线的情况下很难在小型储罐中进行。研究的目的是开发一种可用于小型储罐深水系泊系统的装置。虽然由于线截短,几何相似律被迫退出,但通过保持与数值模拟得到的全尺寸系泊系统相同的恢复、阻尼和惯性特性,力学相似律仍然可以保持。系泊装置由气缸、活塞、孔板、弹簧、滑轮和砝码组成。系泊索上的弹簧产生所需的恢复力。孔板与活塞一起产生所需的阻尼力。惯性力是由悬挂重物的运动和气缸内流体的运动产生的。通过调整重量-弹簧系统的固有频率,甚至可以得到负惯性力。有了所有这些检查的元素,系泊装置就像全深度系泊系统一样工作。通过对全深度条件下系泊浮子的数值模拟,确定了该装置各部件的细节。与强制振荡试验相比,已证实该系泊装置的性能符合预期,在强制振荡试验中,系泊线的浮子端端给出了规定的运动。用该装置对一艘带转塔多点系泊的浮子进行了水池试验,并与全深度系统的数值模拟结果进行了比较,结果令人满意。通过本文的研究,验证了该系泊装置能够很好地模拟实际的深水系泊系统,为小型水箱进行深水系泊实验提供了可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of Water Tank Test Device for Deep-Water Mooring
When conducting model tests in a water tank, available model sizes and wave conditions are determined for each tank, depending on measurement accuracy and tank specifications. For deep-water mooring of a floater, a mooring extent in model scale is presumably over 10 meters in depth, making it difficult to be conducted in small-sized tanks without mooring line truncation. The purpose of the research is to develop a device, which could be used as deep-water mooring system in small-sized tanks. Although the law of geometrical similarity is compelled to quit because of the line truncation, the law of mechanical similarity can be maintained by keeping the same restoring, damping and inertia characteristics as those of the full-scale mooring system obtained by numerical simulations. The mooring device consists of a cylinder, a piston, an orifice, springs, pulleys and weights. A spring attached to the mooring line is to generate required restoring force. The orifice, together with the piston, is to generate required damping forces. Inertia forces are generated by the motions of hanged weights, also by the motion of the fluid inside the cylinder. Even negative inertia forces can be given by adjusting natural frequencies of the weight-spring system. With all these examined elements, the mooring device works like the full-depth mooring system. Particulars of the elements of the device have been determined by numerical simulations of the floater moored in the full-depth condition. It has been confirmed that the mooring device behaves as expected in comparison with forced oscillation tests, where prescribed motions were given to the floater-side end point of the mooring line. A tank test has been conducted of a floater with a turret multipoint-moored with the devices and has been satisfactorily compared with numerical simulations of the full-depth system. With the present research it is verified that the mooring device can well simulate actual deep-water mooring system, which makes it possible for small water tanks to deal with deep water mooring experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Method for Designing the Backbone for the Segmented Model of an Ultra-Large Container Carrier Development of a PID Control Strategy for a Compact Autonomous Underwater Vehicle Global Assessments of Surface Winds and Waves From an Ensemble Forecast System Using Satellite Data Towards the Development of an Ocean Engineering Library for OpenModelica An Experimental Investigation of the Trim Effect on the Behaviour of a Containership in Shallow Water
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1