栅极驱动芯片组采用低压秒脉冲变压器进行电流信号隔离

B. O'Sullivan, Z. Pavlović, N. Fiebig, C. O'Mathúna, S. O’Driscoll
{"title":"栅极驱动芯片组采用低压秒脉冲变压器进行电流信号隔离","authors":"B. O'Sullivan, Z. Pavlović, N. Fiebig, C. O'Mathúna, S. O’Driscoll","doi":"10.1109/APEC43580.2023.10131506","DOIUrl":null,"url":null,"abstract":"This paper presents the design of an isolated gate driver system using a low volt-second differential pulse scheme to enable the use of a thin-film magnetics-on-silicon coupled solenoid transformer. The transformer was designed for a CMOS compatible back-end-of-line (BEOL) process to ultimately enable monolithic integration with the gate driver. The transformer enables primary side or functional isolation of the gate driver with very low propagation delay and low CIO. The design of a prototype custom 130 nm CMOS gate-driver signal-coupling chipset around this transformer achieved operation with sub 10 V.ns gate driver signal pulses. The prototype system simulated a common-mode transient immunity (CMTI) to a switch-node slewing rate of 34 V/ns but simulations on an improved design achieved CMTI of 200 V/ ns. The gate driver system design presented is applicable for advanced heterogeneous integration of thin-film magnetically isolated gate driver chipsets for a variety of power switch technologies including DMOS, GaN, and SiC.","PeriodicalId":151216,"journal":{"name":"2023 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gate Driver Chip-Set using Low Volt-Second Pulse Transformer for Galvanic Signal Isolation\",\"authors\":\"B. O'Sullivan, Z. Pavlović, N. Fiebig, C. O'Mathúna, S. O’Driscoll\",\"doi\":\"10.1109/APEC43580.2023.10131506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the design of an isolated gate driver system using a low volt-second differential pulse scheme to enable the use of a thin-film magnetics-on-silicon coupled solenoid transformer. The transformer was designed for a CMOS compatible back-end-of-line (BEOL) process to ultimately enable monolithic integration with the gate driver. The transformer enables primary side or functional isolation of the gate driver with very low propagation delay and low CIO. The design of a prototype custom 130 nm CMOS gate-driver signal-coupling chipset around this transformer achieved operation with sub 10 V.ns gate driver signal pulses. The prototype system simulated a common-mode transient immunity (CMTI) to a switch-node slewing rate of 34 V/ns but simulations on an improved design achieved CMTI of 200 V/ ns. The gate driver system design presented is applicable for advanced heterogeneous integration of thin-film magnetically isolated gate driver chipsets for a variety of power switch technologies including DMOS, GaN, and SiC.\",\"PeriodicalId\":151216,\"journal\":{\"name\":\"2023 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APEC43580.2023.10131506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC43580.2023.10131506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种采用低电压-秒差分脉冲方案的隔离栅驱动系统的设计,以实现薄膜硅上磁耦合电磁变压器的使用。该变压器设计用于CMOS兼容后端线(BEOL)工艺,最终实现与栅极驱动器的单片集成。该变压器使栅极驱动器的初级侧或功能隔离具有非常低的传播延迟和低CIO。围绕该变压器设计了一个定制的130 nm CMOS栅极驱动信号耦合芯片组原型,实现了低于10 V.ns栅极驱动信号脉冲的工作。原型系统模拟的共模瞬态抗扰度(CMTI)对开关节点旋转速率为34 V/ns,但在改进设计的仿真中,CMTI达到200 V/ns。提出的栅极驱动系统设计适用于各种功率开关技术(包括DMOS, GaN和SiC)的薄膜磁隔离栅极驱动芯片组的先进异构集成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gate Driver Chip-Set using Low Volt-Second Pulse Transformer for Galvanic Signal Isolation
This paper presents the design of an isolated gate driver system using a low volt-second differential pulse scheme to enable the use of a thin-film magnetics-on-silicon coupled solenoid transformer. The transformer was designed for a CMOS compatible back-end-of-line (BEOL) process to ultimately enable monolithic integration with the gate driver. The transformer enables primary side or functional isolation of the gate driver with very low propagation delay and low CIO. The design of a prototype custom 130 nm CMOS gate-driver signal-coupling chipset around this transformer achieved operation with sub 10 V.ns gate driver signal pulses. The prototype system simulated a common-mode transient immunity (CMTI) to a switch-node slewing rate of 34 V/ns but simulations on an improved design achieved CMTI of 200 V/ ns. The gate driver system design presented is applicable for advanced heterogeneous integration of thin-film magnetically isolated gate driver chipsets for a variety of power switch technologies including DMOS, GaN, and SiC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advanced Front-end Monitoring Scheme for Inductive Power Transfer Systems Based on Random Forest Regression An MPC based Power Management Method for Renewable Energy Hydrogen based DC Microgrids Overview of Machine Learning-Enabled Battery State Estimation Methods Ultra-Wideband Unidirectional Reset-Less Rogowski Coil Switch Current Sensor Topology for High-Frequency DC-DC Power Converters Common Source Inductance Compensation Technique for Dynamic Current Balancing in SiC MOSFETs Parallel Operations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1