使用进化优化的自下而上的LNAs系统设计方法

C. Sánchez-López, R. Castro-López, E. Roca, F. Fernández, R. Gonzalez-Echevarria, J. Esteban-Muller, J. López-Villegas, J. Sieiro, N. Vidal
{"title":"使用进化优化的自下而上的LNAs系统设计方法","authors":"C. Sánchez-López, R. Castro-López, E. Roca, F. Fernández, R. Gonzalez-Echevarria, J. Esteban-Muller, J. López-Villegas, J. Sieiro, N. Vidal","doi":"10.1109/SM2ACD.2010.5672346","DOIUrl":null,"url":null,"abstract":"A systematic design methodology for low-noise amplifiers (LNAs) is introduced. This methodology follows a bottom-up approach that employs a multi-objective evolutionary optimization algorithm, which is used at two levels. First, it is used to generate Pareto-based performance models for integrated planar inductors. To do so, an electromagnetic simulator that takes into account the inductor's layout, thus providing highly accurate performance evaluations, is coupled to the optimizer. Unlike foundry-provided inductor libraries, these Pareto-based models offer a detailed insight of the trade-offs between inductance, quality factor and area. Afterwards the Pareto-based models for the inductors are used as design variables to generate the LNA Pareto surface, thus providing highly accurate performance trade-offs of the LNA.","PeriodicalId":442381,"journal":{"name":"2010 XIth International Workshop on Symbolic and Numerical Methods, Modeling and Applications to Circuit Design (SM2ACD)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A bottom-up approach to the systematic design of LNAs using evolutionary optimization\",\"authors\":\"C. Sánchez-López, R. Castro-López, E. Roca, F. Fernández, R. Gonzalez-Echevarria, J. Esteban-Muller, J. López-Villegas, J. Sieiro, N. Vidal\",\"doi\":\"10.1109/SM2ACD.2010.5672346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A systematic design methodology for low-noise amplifiers (LNAs) is introduced. This methodology follows a bottom-up approach that employs a multi-objective evolutionary optimization algorithm, which is used at two levels. First, it is used to generate Pareto-based performance models for integrated planar inductors. To do so, an electromagnetic simulator that takes into account the inductor's layout, thus providing highly accurate performance evaluations, is coupled to the optimizer. Unlike foundry-provided inductor libraries, these Pareto-based models offer a detailed insight of the trade-offs between inductance, quality factor and area. Afterwards the Pareto-based models for the inductors are used as design variables to generate the LNA Pareto surface, thus providing highly accurate performance trade-offs of the LNA.\",\"PeriodicalId\":442381,\"journal\":{\"name\":\"2010 XIth International Workshop on Symbolic and Numerical Methods, Modeling and Applications to Circuit Design (SM2ACD)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 XIth International Workshop on Symbolic and Numerical Methods, Modeling and Applications to Circuit Design (SM2ACD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SM2ACD.2010.5672346\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 XIth International Workshop on Symbolic and Numerical Methods, Modeling and Applications to Circuit Design (SM2ACD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SM2ACD.2010.5672346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

介绍了一种系统的低噪声放大器设计方法。该方法遵循自下而上的方法,采用多目标进化优化算法,该算法在两个层面上使用。首先,利用该方法建立了基于pareto的集成平面电感器性能模型。为此,将考虑电感器布局的电磁模拟器与优化器耦合在一起,从而提供高度精确的性能评估。与代工厂提供的电感库不同,这些基于pareto的模型提供了电感,质量因子和面积之间权衡的详细见解。然后将电感器的基于Pareto的模型用作设计变量来生成LNA Pareto曲面,从而提供高度精确的LNA性能权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A bottom-up approach to the systematic design of LNAs using evolutionary optimization
A systematic design methodology for low-noise amplifiers (LNAs) is introduced. This methodology follows a bottom-up approach that employs a multi-objective evolutionary optimization algorithm, which is used at two levels. First, it is used to generate Pareto-based performance models for integrated planar inductors. To do so, an electromagnetic simulator that takes into account the inductor's layout, thus providing highly accurate performance evaluations, is coupled to the optimizer. Unlike foundry-provided inductor libraries, these Pareto-based models offer a detailed insight of the trade-offs between inductance, quality factor and area. Afterwards the Pareto-based models for the inductors are used as design variables to generate the LNA Pareto surface, thus providing highly accurate performance trade-offs of the LNA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic generation of RF integrated inductors analytical characterization A compact analytical current model including traps effects for GS DG MOSFETs Companion models in two-time scale for multitone steady-state simulation of the nonlinear circuits GGP approach to solve non convex min-max robust model predictive controller for a class of constrained MIMO systems Enumerating all the spanning trees in an un-oriented graph - A novel approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1