S. Chang, Y. Su, T. Kuan, C. H. Ko, S.C. Wei, W. Lan, J. Webb, Y. Cherng, S.C. Chen
{"title":"湿法蚀刻制备氮基器件","authors":"S. Chang, Y. Su, T. Kuan, C. H. Ko, S.C. Wei, W. Lan, J. Webb, Y. Cherng, S.C. Chen","doi":"10.1109/ISDRS.2003.1272015","DOIUrl":null,"url":null,"abstract":"Photo-enhanced chemical (PEC) wet etching technology was used to etch GaN and AlGaN epitaxial layers. Figure 1 shows PEC etch rate for the GaN and Al/sub x/Ga/sub 1-x/N epitaxial layers in aqueous KOH and H/sub 3/PO/sub 4/ solutions. It was found that the maximum etch rates were 510 nm/min, 1960 nm/min, 300 nm/min and 0 nm/min for GaN, Al/sub 0.175/Ga/sub 0.825/N, Al/sub 0.23/Ga/sub 0.77/N and Al/sub 0.4/Ga/sub 0.6/N, respectively. Nitride-based Schottky diodes and heterostructure field effect transistors (HFETs) were also fabricated by PEC wet etching. As shown in figures 2, 3 and 4, it was found that we could achieve a saturated I/sub D/ larger than 850 mA/mm and a maximum g/sub m/ about 163 mS/mm from PEC wet etched HFET with a 0.5/spl mu/m gate length. Compared with dry etched devices, the leakage currents observed from the PEC wet etched devices were also found to be smaller.","PeriodicalId":369241,"journal":{"name":"International Semiconductor Device Research Symposium, 2003","volume":"95 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nitride-based devices fabricated by wet etching\",\"authors\":\"S. Chang, Y. Su, T. Kuan, C. H. Ko, S.C. Wei, W. Lan, J. Webb, Y. Cherng, S.C. Chen\",\"doi\":\"10.1109/ISDRS.2003.1272015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photo-enhanced chemical (PEC) wet etching technology was used to etch GaN and AlGaN epitaxial layers. Figure 1 shows PEC etch rate for the GaN and Al/sub x/Ga/sub 1-x/N epitaxial layers in aqueous KOH and H/sub 3/PO/sub 4/ solutions. It was found that the maximum etch rates were 510 nm/min, 1960 nm/min, 300 nm/min and 0 nm/min for GaN, Al/sub 0.175/Ga/sub 0.825/N, Al/sub 0.23/Ga/sub 0.77/N and Al/sub 0.4/Ga/sub 0.6/N, respectively. Nitride-based Schottky diodes and heterostructure field effect transistors (HFETs) were also fabricated by PEC wet etching. As shown in figures 2, 3 and 4, it was found that we could achieve a saturated I/sub D/ larger than 850 mA/mm and a maximum g/sub m/ about 163 mS/mm from PEC wet etched HFET with a 0.5/spl mu/m gate length. Compared with dry etched devices, the leakage currents observed from the PEC wet etched devices were also found to be smaller.\",\"PeriodicalId\":369241,\"journal\":{\"name\":\"International Semiconductor Device Research Symposium, 2003\",\"volume\":\"95 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Semiconductor Device Research Symposium, 2003\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDRS.2003.1272015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Semiconductor Device Research Symposium, 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDRS.2003.1272015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Photo-enhanced chemical (PEC) wet etching technology was used to etch GaN and AlGaN epitaxial layers. Figure 1 shows PEC etch rate for the GaN and Al/sub x/Ga/sub 1-x/N epitaxial layers in aqueous KOH and H/sub 3/PO/sub 4/ solutions. It was found that the maximum etch rates were 510 nm/min, 1960 nm/min, 300 nm/min and 0 nm/min for GaN, Al/sub 0.175/Ga/sub 0.825/N, Al/sub 0.23/Ga/sub 0.77/N and Al/sub 0.4/Ga/sub 0.6/N, respectively. Nitride-based Schottky diodes and heterostructure field effect transistors (HFETs) were also fabricated by PEC wet etching. As shown in figures 2, 3 and 4, it was found that we could achieve a saturated I/sub D/ larger than 850 mA/mm and a maximum g/sub m/ about 163 mS/mm from PEC wet etched HFET with a 0.5/spl mu/m gate length. Compared with dry etched devices, the leakage currents observed from the PEC wet etched devices were also found to be smaller.