{"title":"含宽带隙半导体器件的半桥电路中寄生振荡的机理","authors":"Tatsuya Yanagi, H. Otake, K. Nakahara","doi":"10.1109/IMFEDK.2014.6867087","DOIUrl":null,"url":null,"abstract":"This paper focuses on revealing the mechanism of parasitic oscillation observed when SiC MOSFETs (metal-oxide-semiconductor field-effect transistors) operate in halfbridge configuration. The relatively large parasitic feed-back capacitance (Cgd) of SiC MOSFETs, especially if the transistors have a low threshold voltage, enhances unintentional turn-on of the device, entailing parasitic oscillation in a half bridge circuit. The wide-band gap semiconductor power device should possess a structure of as low Cgd as possible in addition to a device-specific circuit design, if the general advantage of wide band-gap power devices is utilized to facilitate high-speed switching.","PeriodicalId":202416,"journal":{"name":"2014 IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK)","volume":"437 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"The mechanism of parasitic oscillation in a half bridge circuit including wide band-gap semiconductor devices\",\"authors\":\"Tatsuya Yanagi, H. Otake, K. Nakahara\",\"doi\":\"10.1109/IMFEDK.2014.6867087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on revealing the mechanism of parasitic oscillation observed when SiC MOSFETs (metal-oxide-semiconductor field-effect transistors) operate in halfbridge configuration. The relatively large parasitic feed-back capacitance (Cgd) of SiC MOSFETs, especially if the transistors have a low threshold voltage, enhances unintentional turn-on of the device, entailing parasitic oscillation in a half bridge circuit. The wide-band gap semiconductor power device should possess a structure of as low Cgd as possible in addition to a device-specific circuit design, if the general advantage of wide band-gap power devices is utilized to facilitate high-speed switching.\",\"PeriodicalId\":202416,\"journal\":{\"name\":\"2014 IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK)\",\"volume\":\"437 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMFEDK.2014.6867087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMFEDK.2014.6867087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The mechanism of parasitic oscillation in a half bridge circuit including wide band-gap semiconductor devices
This paper focuses on revealing the mechanism of parasitic oscillation observed when SiC MOSFETs (metal-oxide-semiconductor field-effect transistors) operate in halfbridge configuration. The relatively large parasitic feed-back capacitance (Cgd) of SiC MOSFETs, especially if the transistors have a low threshold voltage, enhances unintentional turn-on of the device, entailing parasitic oscillation in a half bridge circuit. The wide-band gap semiconductor power device should possess a structure of as low Cgd as possible in addition to a device-specific circuit design, if the general advantage of wide band-gap power devices is utilized to facilitate high-speed switching.