{"title":"有机五苯基mosfet的数值模拟研究","authors":"D. Prentice, K. Roenker","doi":"10.1109/ISDRS.2003.1272065","DOIUrl":null,"url":null,"abstract":"The operation and performance of the organic, pentacene-based MOSFETs has been studied using a two dimensional, drift-diffusion approach utilizing a commercial numerical device simulator. Organic semiconductors have been proposed as a replacement for amorphous or polycrystalline-based silicon devices for low cost applications such as RF tags and display drivers. While extensive experimental development of these devices has proceeded, their study using device modeling has received comparatively little attention. In this work, the results of device modeling using a commercial simulator will be compared with the experimental reports for pentacene-based, p-channel MOSFETs for both bottom and top contact geometries. The results demonstrate that commercial simulators can be used to model these devices in spite of the nontraditional nature of the hole transport in organic semiconductors.","PeriodicalId":369241,"journal":{"name":"International Semiconductor Device Research Symposium, 2003","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Numerical modeling study of organic pentacene-based MOSFETs\",\"authors\":\"D. Prentice, K. Roenker\",\"doi\":\"10.1109/ISDRS.2003.1272065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The operation and performance of the organic, pentacene-based MOSFETs has been studied using a two dimensional, drift-diffusion approach utilizing a commercial numerical device simulator. Organic semiconductors have been proposed as a replacement for amorphous or polycrystalline-based silicon devices for low cost applications such as RF tags and display drivers. While extensive experimental development of these devices has proceeded, their study using device modeling has received comparatively little attention. In this work, the results of device modeling using a commercial simulator will be compared with the experimental reports for pentacene-based, p-channel MOSFETs for both bottom and top contact geometries. The results demonstrate that commercial simulators can be used to model these devices in spite of the nontraditional nature of the hole transport in organic semiconductors.\",\"PeriodicalId\":369241,\"journal\":{\"name\":\"International Semiconductor Device Research Symposium, 2003\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Semiconductor Device Research Symposium, 2003\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDRS.2003.1272065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Semiconductor Device Research Symposium, 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDRS.2003.1272065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical modeling study of organic pentacene-based MOSFETs
The operation and performance of the organic, pentacene-based MOSFETs has been studied using a two dimensional, drift-diffusion approach utilizing a commercial numerical device simulator. Organic semiconductors have been proposed as a replacement for amorphous or polycrystalline-based silicon devices for low cost applications such as RF tags and display drivers. While extensive experimental development of these devices has proceeded, their study using device modeling has received comparatively little attention. In this work, the results of device modeling using a commercial simulator will be compared with the experimental reports for pentacene-based, p-channel MOSFETs for both bottom and top contact geometries. The results demonstrate that commercial simulators can be used to model these devices in spite of the nontraditional nature of the hole transport in organic semiconductors.