涡发生器对掀背式汽车气动阻力的影响

Sanjay D. Patil, Vikas T. Mujmule, Ajay P. Mahale, Suhas A. Jagtap, Ganesh S. Patil
{"title":"涡发生器对掀背式汽车气动阻力的影响","authors":"Sanjay D. Patil, Vikas T. Mujmule, Ajay P. Mahale, Suhas A. Jagtap, Ganesh S. Patil","doi":"10.37285/ajmt.1.2.3","DOIUrl":null,"url":null,"abstract":"Aerodynamic drag force is one of the main obstacles on moving a vehicle. This force significantly reduces a vehicle's speed and, as a result, its fuel efficiency. In today’s scenario, fuel efficiency is a prime concern in vehicle design, so a reduction in aerodynamic drag force is highly important. Road vehicles are designed to pass through surrounding air and displace it as efficiently as possible. Due to the rear shape of a car, airflow suddenly separates from the vehicle at a point near the rear windscreen. This flow separation at the rear end of the car is responsible for the drag force, which is the main opposition to the vehicle's forward motion. This drag force is proportional to the square of the velocity of the car and, as a result, increases significantly after certain speeds. To reduce the drag force, the flow separation at the rear end needs to be avoided. In hatch-back type cars, to avoid this separation, a vortex generator (VG) can be used. VG creates the vortex at the rear end of the car, which delays the flow separation and, ultimately, drag is reduced significantly. In this work, the effect of a VG on the pressure distribution, velocity destitution and aerodynamic drag on the hatchback type car, is studied by the numerical simulation. The numerical simulations are carried out using the ANSYS FLUENT® software. The simulation setup is validated with wind tunnel test results.","PeriodicalId":294802,"journal":{"name":"ARAI Journal of Mobility Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effects of Vortex Generators on Aerodynamic Drag Force in the Hatchback Type Car\",\"authors\":\"Sanjay D. Patil, Vikas T. Mujmule, Ajay P. Mahale, Suhas A. Jagtap, Ganesh S. Patil\",\"doi\":\"10.37285/ajmt.1.2.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aerodynamic drag force is one of the main obstacles on moving a vehicle. This force significantly reduces a vehicle's speed and, as a result, its fuel efficiency. In today’s scenario, fuel efficiency is a prime concern in vehicle design, so a reduction in aerodynamic drag force is highly important. Road vehicles are designed to pass through surrounding air and displace it as efficiently as possible. Due to the rear shape of a car, airflow suddenly separates from the vehicle at a point near the rear windscreen. This flow separation at the rear end of the car is responsible for the drag force, which is the main opposition to the vehicle's forward motion. This drag force is proportional to the square of the velocity of the car and, as a result, increases significantly after certain speeds. To reduce the drag force, the flow separation at the rear end needs to be avoided. In hatch-back type cars, to avoid this separation, a vortex generator (VG) can be used. VG creates the vortex at the rear end of the car, which delays the flow separation and, ultimately, drag is reduced significantly. In this work, the effect of a VG on the pressure distribution, velocity destitution and aerodynamic drag on the hatchback type car, is studied by the numerical simulation. The numerical simulations are carried out using the ANSYS FLUENT® software. The simulation setup is validated with wind tunnel test results.\",\"PeriodicalId\":294802,\"journal\":{\"name\":\"ARAI Journal of Mobility Technology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ARAI Journal of Mobility Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37285/ajmt.1.2.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ARAI Journal of Mobility Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37285/ajmt.1.2.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

气动阻力是影响车辆运动的主要障碍之一。这种力大大降低了车辆的速度,从而降低了其燃油效率。在当今的情况下,燃油效率是车辆设计的首要考虑因素,因此减少空气动力阻力非常重要。道路车辆被设计成通过周围的空气,并尽可能有效地置换它。由于汽车的尾部形状,气流会在靠近后挡风玻璃的地方突然与汽车分离。汽车尾部的这种气流分离产生了阻力,这是车辆向前运动的主要阻力。这种阻力与汽车速度的平方成正比,因此,在达到一定速度后,阻力会显著增加。为了减小阻力,需要避免后端流动分离。在掀背式汽车中,为了避免这种分离,可以使用涡发生器(VG)。VG在汽车的后端产生涡流,从而延迟了气流分离,最终显著减少了阻力。本文采用数值模拟的方法,研究了涡扇对掀背式汽车压力分布、速度匮乏和气动阻力的影响。采用ANSYS FLUENT®软件进行了数值模拟。仿真结果与风洞试验结果相吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of Vortex Generators on Aerodynamic Drag Force in the Hatchback Type Car
Aerodynamic drag force is one of the main obstacles on moving a vehicle. This force significantly reduces a vehicle's speed and, as a result, its fuel efficiency. In today’s scenario, fuel efficiency is a prime concern in vehicle design, so a reduction in aerodynamic drag force is highly important. Road vehicles are designed to pass through surrounding air and displace it as efficiently as possible. Due to the rear shape of a car, airflow suddenly separates from the vehicle at a point near the rear windscreen. This flow separation at the rear end of the car is responsible for the drag force, which is the main opposition to the vehicle's forward motion. This drag force is proportional to the square of the velocity of the car and, as a result, increases significantly after certain speeds. To reduce the drag force, the flow separation at the rear end needs to be avoided. In hatch-back type cars, to avoid this separation, a vortex generator (VG) can be used. VG creates the vortex at the rear end of the car, which delays the flow separation and, ultimately, drag is reduced significantly. In this work, the effect of a VG on the pressure distribution, velocity destitution and aerodynamic drag on the hatchback type car, is studied by the numerical simulation. The numerical simulations are carried out using the ANSYS FLUENT® software. The simulation setup is validated with wind tunnel test results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparative Performance Assessment of Sizing of Electric Motor through Analytical Approach for Electric Vehicle Application Study on Various Position Sensing Technologies in Tractor Hitch Application Algorithm based Calibration Strategies in an Electric Powertrain Impact of Fused Deposition Modeling Process Parameters and Heat Treatment on Mechanical Characteristics and Product Quality: A Review Experimental Assessment of Genset Performance for PCCI-DI Combustion Engine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1