类梯度动力学在神经网络中的应用

J. W. Howse, C. Abdallah, G. Heileman, M. Georgiopoulos
{"title":"类梯度动力学在神经网络中的应用","authors":"J. W. Howse, C. Abdallah, G. Heileman, M. Georgiopoulos","doi":"10.1109/SOUTHC.1994.498081","DOIUrl":null,"url":null,"abstract":"This paper reviews a formalism that enables the dynamics of a broad class of neural networks to be understood. This formalism is then applied to a specific network and the predicted and simulated behavior of the system are compared. The purpose of this work is to utilise a model of the dynamics that also describes the phase space behavior and structural stability of the system. This is achieved by writing the general equations of the neural network dynamics as a gradient-like system. In this paper it is demonstrated that a network with additive activation dynamics and Hebbian weight update dynamics can be expressed as a gradient-like system. An example of an S-layer network with feedback between adjacent layers is presented. It is shown that the process of weight learning is stable in this network when the learned weights are symmetric. Furthermore, the weight learning process is stable when the learned weights are asymmetric, provided that the activation is computed using only the symmetric part of the weights.","PeriodicalId":164672,"journal":{"name":"Conference Record Southcon","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An application of gradient-like dynamics to neural networks\",\"authors\":\"J. W. Howse, C. Abdallah, G. Heileman, M. Georgiopoulos\",\"doi\":\"10.1109/SOUTHC.1994.498081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reviews a formalism that enables the dynamics of a broad class of neural networks to be understood. This formalism is then applied to a specific network and the predicted and simulated behavior of the system are compared. The purpose of this work is to utilise a model of the dynamics that also describes the phase space behavior and structural stability of the system. This is achieved by writing the general equations of the neural network dynamics as a gradient-like system. In this paper it is demonstrated that a network with additive activation dynamics and Hebbian weight update dynamics can be expressed as a gradient-like system. An example of an S-layer network with feedback between adjacent layers is presented. It is shown that the process of weight learning is stable in this network when the learned weights are symmetric. Furthermore, the weight learning process is stable when the learned weights are asymmetric, provided that the activation is computed using only the symmetric part of the weights.\",\"PeriodicalId\":164672,\"journal\":{\"name\":\"Conference Record Southcon\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Record Southcon\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOUTHC.1994.498081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record Southcon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOUTHC.1994.498081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文回顾了一种形式主义,这种形式主义使人们能够理解一类广泛的神经网络的动态。然后将这种形式应用于一个特定的网络,并对系统的预测行为和模拟行为进行比较。这项工作的目的是利用动力学模型来描述系统的相空间行为和结构稳定性。这是通过将神经网络动力学的一般方程写成一个类梯度系统来实现的。本文证明了具有加性激活动力学和Hebbian权值更新动力学的网络可以表示为类梯度系统。给出了一个具有相邻层间反馈的s层网络的实例。结果表明,当学习到的权值是对称的时,该网络的权值学习过程是稳定的。此外,如果只使用权重的对称部分计算激活,则当学习到的权重是非对称时,权重学习过程是稳定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An application of gradient-like dynamics to neural networks
This paper reviews a formalism that enables the dynamics of a broad class of neural networks to be understood. This formalism is then applied to a specific network and the predicted and simulated behavior of the system are compared. The purpose of this work is to utilise a model of the dynamics that also describes the phase space behavior and structural stability of the system. This is achieved by writing the general equations of the neural network dynamics as a gradient-like system. In this paper it is demonstrated that a network with additive activation dynamics and Hebbian weight update dynamics can be expressed as a gradient-like system. An example of an S-layer network with feedback between adjacent layers is presented. It is shown that the process of weight learning is stable in this network when the learned weights are symmetric. Furthermore, the weight learning process is stable when the learned weights are asymmetric, provided that the activation is computed using only the symmetric part of the weights.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real-time eye feature tracking from a video image sequence using Kalman filter Learning situational knowledge through observation of expert performance in a simulation-based environment Electro-optical sensor packaging overview Range extension for electric vehicles Very large scale integrated circuit architecture performance evaluation using SES modelling tools
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1